

AllMyPapers

AMPLIB
Software Development Tool

Kit
API Reference Guide

Version 8.0
3/2020

040-100034

Information in this document is subject to change without notice and does not represent a
commitment on the part of AllMyPapers. The software described in this document is
furnished under a license agreement. It may be used and copied only in accordance with the
terms of the agreement. No part of this manual may be reproduced or transmitted in any form
or by any means, electronic or mechanical, including photocopying and recording, for any
purpose other than the purchaser's personal use without the written permission of
AllMyPapers.

 2003 - 2020 AllMyPapers. All Rights Reserved.
Printed in the United States of America.

AMPLIB is a trademark of AllMyPapers. MS-DOS, Visual Basic, Visual C/C++ and
Microsoft Windows are trademarks of Microsoft Corporation. Delphi is a trademark of
Borland International. All other brand and product names are trademarks or registered
trademarks of their respective companies.

All My Papers
1840 Snake River Road

Suite C, Katy, TX 77449
 (408) 366-6400

www.allmypapers.com

AMPLIB - Software Developer’s Toolkit Contents i

Contents

Introduction 5
The AMPLIB SDK and MICR .. 5

Goals .. 5
Optional Goals ... 6

The AMPLIB SDK and Bar Code Recognition ... 6

Installation 7
System Requirements ... 7
Software Installation Process ... 7

DLL Based API ... 7
Single Threaded/Multi Threaded DLLs ... 7
Customer Support .. 8

Description of AMPLIB Components ... 9
Components ... 9
Distribution of Components .. 10
Initialization File: AMPLIB.INI .. 10

Introduction to AMPLIB Programming 11
Overview .. 11
C/C++ Programming .. 11
Visual BASIC Programming ... 11
Delphi Programming .. 11
.NET Programming ... 11
Quick Start ... 11
Work Image ... 15

Color and Grayscale Images .. 15
Sub-Images .. 16
Alias Images ... 17

Compiling and Linking 19
Overview .. 19
Build Process ... 20

C++ Compiles .. 20

The AMPLIB API 21
Overview .. 21
Summary of AMPLIB APIs ... 21
API Description Format ... 24
Image Management Function ... 25

ampCreateWorkImage ... 25
ampCreateGrayWorkImage ... 27
ampCreateColorWorkImage .. 29
ampCreateImageAlias .. 31
ampFreeAllImages ... 32
ampFreeImage ... 33

ii Contents AMPLIB – Software Developer’s Toolkit

ampGetGrayImageMetrics .. 34
ampGetImageMetrics .. 35
ampGetImageResolution ... 36
ampGetRunsInfo ... 37
ampSetImageMetrics ... 38
ampSetImageResolution .. 39

MICR Functions .. 41
Camera Feature License .. 42
MICR Verify Functions ... 42
MICR Parameters .. 43
ampAnalyzeResolutionEx ... 50
ampFormatMICRFields ... 51
ampFieldVerifyEx ... 51
ampFormatMICRFields ... 54
ampParseMicr .. 55
ampPrepMicr ... 56
ampPrepPage ... 58
ampReadMicr .. 59
ampReadMicrPage .. 60
ampReadMicrDouble .. 61
ampReadMicrCamera .. 63
ampReadCamera.. 64
ampReadCameraRear .. 66
ampReadScannerForChecks .. 68
ampReadMicrScannerForChecks .. 70
ampVoteIRDRepair ... 71
ampVoteIRDRetry ... 72
ampVoteMicrRepair .. 73
ampVoteMicrRetry .. 73

Bar Code Reading Functions ... 75
Bar Code Creation Guidelines ... 75
Bar Code Reading Overview ... 75
Bar Code Parameters ... 78

ampGetBarCodeData ... 84
ampReadBarCodes .. 86

OCR Functions .. 87
OCR Parameters .. 88

ampReadOCR .. 93
Coupon Functions .. 95

ampDetectCoupon ... 95
Extraction Technology Functions .. 97

ampSobelEdgePrepEx ... 98
File and Image Transfer Functions .. 101

ampAnalyzeTagBuffer .. 102
ampCreateDIB ... 103
ampCreateDIBSection ... 104
ampLoadClipboard .. 105
ampLoadDIB ... 106
ampLoadDIBHandle ... 107
ampLoadDIBSectionHandle.. 108
ampLoadImage .. 109
ampLoadImageHnd ... 113
ampLoadImageBuffer ... 114
ampSaveClipboard .. 115
ampSaveImage .. 116
ampSaveImageBuffer .. 118
ampSaveImageHnd ... 120

AMPLIB - Software Developer’s Toolkit Contents iii

ampSetImageMargins .. 121
ampSetInputImageMetrics ... 122

Image Manipulation Functions .. 123
ampAnnotateImage .. 124
ampBitBltImage ... 127
ampClearImage .. 128
ampConvertImage .. 129
ampCopyImage .. 130
ampDeSkew ... 131
ampDitherImage .. 133
ampFillImage ... 134
ampGrayMirrorImage .. 135
ampGrayProcesses ... 136
ampGrayScaleResolution .. 138
ampInvertImage ... 139
ampMirrorImage .. 140
ampOutsideFillImage .. 141
ampRotateImage .. 142
ampScaleImage .. 143
ampThresholdImage .. 145
ampDynamicThreshold .. 145

Image Filtering Functions .. 147
ampDeBorder ... 148
ampDeLine .. 149
ampDeShade .. 151
ampDeSpec .. 153
ampDeStreak ... 155
ampFilterImage .. 156

Miscellaneous Functions .. 161
ampAssembleMICR .. 162
ampCheckImageQuality .. 164
ampGetImageAddress .. 168
ampGetImageBlock ... 169
ampGetImageInfo .. 170
ampGetLicenseInfo.. 171
ampGetMessageText ... 173
ampGetFileVersion .. 174
ampGrayGetImageBlock ... 175
ampGrayPutImageBlock .. 176
ampPutImageBlock .. 177
ampTrace ... 178
ampTraceEnable .. 179

Appendix A 181
AMPLIB Based Application Programs .. 181

MICR BATCH .. 181
AMPTEST ... 181

Appendix B 182
AMPLIB Error Codes .. 182

Appendix C 185
AMPLIB License Manager .. 185
Overview .. 185
Modes of Operation ... 185
On-line Registration ... 185

iv Contents AMPLIB – Software Developer’s Toolkit

License Keys ... 186
Changing Your Address .. 187
Proxy Files ... 188
Site License Administrator .. 188

Off-Line Registration .. 188
Show Licenses ... 189
OEM Licenses ... 190

Appendix D 191
What is MICR? .. 191
Overview ... 191
MICR Character Set .. 192

Appendix E 193
Bar Code Symbology Examples .. 193

Code 39 (3 of 9) .. 193
Discrete 2 of 5 ... 194
Interleaved 2 of 5 ... 195
CODABAR ... 196
UPC-A ... 197
UPC-E ... 198
EAN-8 and EAN-13 .. 199
Code 93 ... 200
Code 128 ... 201
UCC 128 .. 202
Postnet ... 203
4-State Barcodes .. 204
Reading Postal Codes .. 205
PDF-417 .. 207
Data Matrix ... 207
Quick Response (QR) .. 209

Glossary 217
Glossary of Terms ... 217

Index 221

AMPLIB- Software Developer’s Toolkit Installation 5

Introduction

The AMPLIB SDK and MICR

Before the 1950s, all checks were hand sorted. As more people opened
checking accounts, banks found it difficult to keep up with the volume.
In 1958 Stanford University and the Bank of America developed
Magnetic Ink Character Recognition (MICR), which enabled checks to
be sorted by computers. MICR characters were designed to have
distinctive shapes that could be easily recognized by machines capable
of sensing the magnetic particles in the ink.
Now, magnetized ink is not necessary because of the power of desktop
computers, low-cost optical scanning technologies, and new advanced
Optical Character Recognition (OCR) algorithms. Developers using the
AMPLIB high-level programming system can recognize MICR
characters printed with any standard ink., and recognize them reliably
even in situations where signatures and other handwritten comments on
the check partially obscure the MICR characters.
AMPLIB consists of Microsoft Windows compatible Dynamic Link
Libraries, associated import libraries, header files, and other support
files that can be used by a wide variety of programming languages and
systems. For brevity, the product will be referred to as AMPLIB
throughout this document.

Goals
Specific goals of AMPLIB include:

 Accurate reading of MICR characters even if obscured by
noise or by descenders from the signature on the check.

 Accurate reading of MICR characters on grayscale and color
check images.

 Automatic detection of the MICR character line on a check
image.

 A clear and understandable API that addresses the desired
operation and masks the underlying complexity.

 Automatic memory management of image workspaces.

. Automatic verification of captured MICR data from X9 Image
Cash letter files or check processing system databases.

. Automatic image usability verification of the MICR Codeline

contained on the item’s image.

6 Installation AMPLIB – Software Developer’s Toolkit

. Transportability to different operating system platforms as well
as hardware platforms. The library supports Windows
95/98/ME and Windows NT/2000.

Optional Goals
The API includes options to assist the developer in providing desired
high level results.

 Voting between an existing result (hardware or software
generated) and the AMPLIB result.

 Modifying the source image in the same manner as was used to
achieve accurate MICR read result.

 Field parsing for standard fields such as route, account, amount
and check number.

The AMPLIB SDK and Bar Code Recognition
Reading bar codes from binary images has become relatively common.
The AmpLib bar code binary engine has tested better than any of its
competitors on a wide range of images. The latest version of AmpLib
adds bar code reading from color and grayscale images.

The use of color and grayscale images can be used to improve read
rate, read more data from the same size bar code or read the same
amount of data from a smaller bar code.

AMPLIB- Software Developer’s Toolkit Installation 7

Installation

System Requirements
 AMPLIB requires Microsoft Windows to be installed on your system to

run correctly and supports:
 Windows 95/98/ME (TERMINATED)
 Windows 2000/NT (TERMINATED)
 Windows XP/Vista (TERMINATED)
 Windows 8 (TERMINATED)
 Windows 7/8.1/10
 Windows Server 2003 (TERMINATED)
 Windows Server 2008, 2012

For best performance, AllMyPapers recommends a minimum of 2 GB.
A compiler or other language product that can call DLL-resident
functions is required to use the toolkit.

 COM support has terminated and .NET is recommended.

Software Installation Process
The AMPLIB - MICR/Barcode Developer’s Toolkit is only available on
the Internet. After downloading the software refer to the README
installation notes for further instructions.

DLL Based API
AMPLIB is built as a set of Dynamic Link Libraries (DLLs) using the
standard Microsoft convention of _stdcall calling sequences. This
provides a degree of language independence between AMPLIB and a
user-written application. Any language that can call a DLL-resident
function can access AMPLIB. Care has been taken in the function call
arguments to require a minimum of special types so function prototypes
can be written in almost any language. As a result, AMPLIB can be
used with C/C++, Delphi, Visual Basic and other languages.

Single Threaded/Multi Threaded DLLs
The standard AMPLIB DLL is single threaded. This is what is available
for download from the allmypapers website. Multi thread versions of
the DLL are available under special license agreement for the MICR
OCR, MICR Verify and Image Processing engines. Additional engines
are being added to the multi thread DLLs so please check with sales for
the latest set. See the ampGetFileVersion for the method to determine
which DLL is installed.

8 Introduction to AMPLIB Programming AMPLIB – Software Developer’s Toolkit

Customer Support
The AllMyPapers Support Policy is defined in a package insert.

AMPLIB- Software Developer’s Toolkit Installation 9

Description of AMPLIB Components

Components
 AMPLIB.HLP
 AMPLIB.INI
 AMPLIB.OUT
 AMPLIBAPI.H
 AMPLIBAPIC.H
 AMPBARAPI.H
 AMPBARAPIC.H
 AMPLIB.BAS
 AMPLIB.PAS
 AMPLIB.LIB
 AMPLIB.DLL
 AMPLM.DLL
 AMPPX.DLL
 LICMGR.EXE
 LOGOSDM.DLL
 LVSNUM.FNT
 LVSOCRA.FNT
 LVSOCRB.FNT
 LVSMICR.FNT
 LVSFSB.FNT
 LVSCAR.FNT
 STORAGE.DAT

The set of DLL files implement the AMPLIB system.
AMPLIB.HLP is the AMPLIB help file used with the standard
Windows Help Engine. AMPLIB.INI describes configuration
parameters and must be in the same directory as the AMPLIB.DLL.
All of the executable files should be in your PATH if you wish to run
them from another location. By default, all the files are placed in
Program Files\All My Papers\Amplib\Bin. If there are not found there,
the current program directory will be searched and finally the users
PATH.
The *.H and *.BAS, and *.PAS files are headers for the Microsoft C,
Visual BASIC, and Delphi 4.0 languages respectively. The files
“amplibapi.h” and "ampbarapi.h" should be considered the master
versions.

The files “storage.dat”, "lvsmicr.fnt", "lvsocra.fnt", "lvsocrb.fnt",
"lvsnum.fnt", lvsfsb.fnt,” and “lvscar.fnt.” contain shape definitions for
the MICR, OCR-A, OCR-B, generic numeric characters, four-state bar
codes, and check courtesy amount characters. The file "logosdm.dll" is
used for recognizing data matrix 2D barcodes. All the files should be
placed in the same directory as AMPLIB.DLL.

10 Introduction to AMPLIB Programming AMPLIB – Software Developer’s Toolkit

Distribution of Components
The header files (*.h,*.pas,*bas) and library file (*.lib) are NOT to be
distributed unless given permission by a specific contract.
The files “storage.dat”, "lvsmicr.fnt", "lvsocra", "lvsocrb", "lvsnum.fnt"
are only needed to be included in MICR distributions.
There a number of files that are not listed above and that are used to
support the demo applications included in AmpLib. These files should
not be distributed.

Initialization File: AMPLIB.INI
The AMPLIB.INI file provides startup time control parameters. The
Trace facility is the most commonly used. By invoking Trace at start
time, issues such as licensing can more easily be resolved. The user can
control tracing separately with the ampTraceEnable function. In
general, running with Trace on will slow down processing by a large
amount.
 The license control process will issue warnings when temporary
licenses are about to expire. The Quiet parameter in the ini file will
prevent this from happening. This is particularly important in server
environments.

Example INI file that will turn on trace, name the trace file and turn off
license expiration messages.
[Trace]
Enable=yes
File=h:\amplib.log
Quiet=1

AMPLIB- Software Developer’s Toolkit Introduction to AMPLIB Programming 11

Introduction to AMPLIB
Programming

Overview
AMPLIB gives you a powerful yet simple paradigm for adding MICR
character and barcode recognition to your imaging applications under
Microsoft Windows. Central to AMPLIB are a few basic terms and
concepts, which are used throughout the AMPLIB system. Master these
and you have mastered AMPLIB.

C/C++ Programming
If you are not already familiar with C/C++ programming, you should
first familiarize yourself with the language, because AMPLIB functions
are described using C-language syntax. The AMPLIBAPI.H header file
is written to Microsoft standards. C compiles may require minor
modification to the header file to avoid name mangling.

Visual BASIC Programming
AMPLIB ships with a Microsoft Visual BASIC compatible declaration
module, which can be included in your Visual BASIC applications.
Your Visual BASIC Programming Guide contains reference information
on converting C data declarations to Visual BASIC declarations. For
flexibility, you may want to change some of the declaration argument
types to "As Any" to allow passing NULL pointer arguments, or other
variants.

Delphi Programming
AMPLIB ships with a Borland Delphi 4.0 compatible declarations
module which can be included in your Delphi applications. Many of the
example programs are written in Delphi.

.NET Programming
AMPLIB ships a separate module for .NET programming. This includes
applications written in VB and CSharp along with their source code.

Quick Start
The purpose of this section is to provide source code examples that
show how easy it is to use AMPLIB to read MICR characters from

12 Introduction to AMPLIB Programming AMPLIB – Software Developer’s Toolkit

image files. The two examples provided here are written in C/C++, but
the sequence and names of the AMPLIB calls would be the same for
Visual Basic, Delphi, or any other programming environment. The first
code example is shown below.
 // Reading MICR from checks scanned on a check scanner.
 // Attempt to read any MICR symbols on the check image.
 // Rotate 180 degrees if cannot find on bottom of page and try top.
 // Return 0 if successful
int nEasyMICRRead (LPSTR szFilename, LPSTR szResult)
{
 int nStat;
 PWORKIMAGE pWFile; // Source MICR image
 ampPREPINFO piInfo; // Preprocessing parameters
 ampMICRINFO ampMI; // MICR parameters/results data structure

 // Create AMP image for the source image file
 nStat = ampCreateGrayWorkImage (&pWFile, 0, 0);
 if (nStat) return nStat;

 // Load the AMP image from the specified file
 nStat = ampLoadImage(pWFile, szFilename, "", NULL, 1);
 if (nStat)
 {
 ampFreeImage(pWFile);
 return nStat;
 }

 strcpy (ampMI.infile, ""); // Work files normally found on users path
 strcpy (ampMI.outfile, ""); // Not Used

 ampMI.Dorepair = 1; // Repair degraded characters
 ampMI.Do180 = 1; // Look for upside down MICR codes
 ampMI.Resolution = - 1 ; // Use image resolution
 ampMI.Code = 0 ; // Default to E13B
 ampMI.NoBlanks = 0 ; // Report blanks
 ampMI.UseTranslator = 0 ; // Use default character translation
 ampMI.NoRules = 0; // Use rules
 ampMI.Rules = 0 ; // Type of rules: ABA
 ampMI.MinCon = 80 ; // Minimum confidence
 ampMI.DoImageRepair = 0 ; // No output of repaired image
 ampMI.MaxTime = 0 ; // No limit on time to process
 ampMI.StartTime = 0 ; // 0 for first entry

 // Read the MICR characters
 nStat = ampReadMicr (pWFile, &MI);
 if (nStat)
 {
 ampFreeImage(pWFile);
 return nStat;
 }

 // The results are now in ampMI.resultchar so add
 // a null character to make it a "c" compatible string
 // and copy it so the calling routine can use it
 ampMI.resultchar[ampMI.lastchar] = 0;
 strcpy (szResult, &MI.resultchar[0]);

 // All done, release image memory
 ampFreeImage(pWFile);
 return 0;
}

This example is designed to use an image file that contains only a
check. It assumes that there is no substantial skew to the image, and
that there are no margins around the check. The image would be typical
of what a check scanner generates.
AMPLIB has the capability to automatically rotate, deskew, and crop
check images that are in an irregular format. The following example

AMPLIB- Software Developer’s Toolkit Introduction to AMPLIB Programming 13

uses the ampPrepMicr function to prepare a check image that has been
scanned on a traditional page scanner.

 //
 // Reading MICR from checks scanned on letter size page scanner.
 //
 // Pre-processing the images from a letter size page paper scanner
 // with black edges. The same process, with a parameter change, works on
 // white edge scanners as well.
 // Black edges will be removed.
 // Check image will be rotated 90 degrees if taller than wider.
 // Check image will be deskewed.
 //
 // Attempt to read any MICR symbols at the bottom of the specified check
 // image and if none are found, rotate the image 180 degrees and try again.
 //
 // Return 0 if successful

int nEasyMICRRead_Prep (LPSTR szFilename, LPSTR szResult)

{
 int nStat;

 PWORKIMAGE pWFile; // Source MICR image
 PWORKIMAGE pWMicr; // Image after preprocessing
 ampPREPINFO piInfo; // Preprocessing parameters
 ampMICRINFO ampMI; // MICR parameters/results data structure

 // Create AMP image for the source image file
 nStat = ampCreateWorkImage (&pWFile, 0, 0);

 if (nStat)
 return nStat;

 // Create AMP image for the preprocessed image
 nStat = ampCreateWorkImage (&pWMicr, 0, 0);

 if (nStat)
 {
 ampFreeImage(pWFile);
 return nStat;
 }

 // Load the AMP image from the specified file
 nStat = ampLoadImage(pWFile, szFilename, "", NULL, 1);

 if (nStat)
 {
 ampFreeImage(pWFile);
 ampFreeImage(pWMicr);
 return nStat;
 }

14 Introduction to AMPLIB Programming AMPLIB – Software Developer’s Toolkit

 // Initialize MICR prep structure to deskew with black edges
 piInfo.BlackEdges = 1;

 // Copy MICR image doing any scaling, rotation, and deskewing needed
 nStat = ampPrepMicr(pWFile, pWMicr, &piInfo);

 if (nStat)
 {
 ampFreeImage(pWFile);
 ampFreeImage(pWMicr);
 return nStat;
 }

 strcpy (ampMI.infile, ""); // Work files normally found on users path
 strcpy (ampMI.outfile, ""); // Not used

 ampMI.Dorepair = 1; // Repair degraded characters
 ampMI.Do180 = 1; // Look for upside down characters
 ampMI.Resolution = - 1 ; // Use image resolution
 ampMI.Code = 0 ; // Default to E13B
 ampMI.NoBlanks = 0 ; // Report blanks
 ampMI.UseTranslator = 0 ; // Use default character translation
 ampMI.NoRules = 0; // Use rules
 ampMI.Rules = 0 ; // Type of rules: ABA
 ampMI.MinCon = 80 ; // Minimum confidence
 ampMI.DoImageRepair = 0 ; // No output of repaired image
 ampMI.MaxTime = 0 ; // No Limit on time to process
 ampMI.StartTime = 0 ; // 0 for first entry

 // Read the MICR characters
 nStat = ampReadMicr (pWMicr, &MI);

 if (nStat)
 {
 ampFreeImage(pWFile);
 ampFreeImage(pWMicr);
 return nStat;
 }

 // The results are now in ampMI.resultchar so add
 // a null character to make it a "c" compatible string
 // and copy it so the calling routine can use it
 ampMI.resultchar[ampMI.lastchar] = 0;
 strcpy (szResult, &MI.resultchar[0])

 // All done, release image memory
 ampFreeImage(pWFile);
 ampFreeImage(pWMicr);
 return 0;
}

Using these two examples as an overview to the general flow of MICR
reading with AMPLIB, let’s continue by discussing some of the
fundamentals of AMPLIB that are needed to construct more advanced
applications.

AMPLIB- Software Developer’s Toolkit Introduction to AMPLIB Programming 15

Work Image
A work image, in the AMPLIB sense, is just a block of storage used to
hold an array of pixels to form an image. AMPLIB takes care of
managing the storage for your work images. Work images are identified
by a 32-bit variable which contains a pointer to the work image. The
calling application provides the space (4 bytes) and name for this
pointer. Calling ampCreateWorkImage allocates the memory needed
for the work image itself.

Work images are a
fundamental data structure
of AMPLIB. All image
operations are directed
toward a work image.

A work image may be either fixed size or variable size. For most
applications, variable size work images will be the most convenient.
Variable size work images will automatically receive as much storage as
needed; they may shrink and grow dynamically during use. Fixed size
work images receive an initial storage allocation when they are created
and that amount never changes. Both types of work images may be
destroyed (and their storage freed) at any time under program control.
To create a variable size work image, create the work image with a width
and height of 0. Non-zero width and height values will create a fixed
size image.
A work image is rectangular in nature and defined as having a pitch and
height. Pitch is the number of pixels across a line of the work image,
and height is the number of lines in the work image. For example, a
letter sized image, 8.5" x 11" at 300 dpi would typically have a pitch of
2560 and a height of 3296 pixels. Pitch is an important concept, as will
be discussed with sub-images below. Remember that pitch is a distance
measurement, the number of pixels between adjacent lines.

Color and Grayscale Images
Color and grayscale image files are processed at load or scan time to be
stored internally as color or grayscale image data. MICR and Barcode
OCR can be much more effective with grayscale data but rarely uses
color for processing. The color information is usually converted to
grayscale at load time and optionally designated colors may be dropped
out.

16 Introduction to AMPLIB Programming AMPLIB – Software Developer’s Toolkit

Sub-Images
AMPLIB always operates on the active sub-image area of a given work
image. A sub-image is a rectangular region of a work image that is
equal to or smaller than the work image pitch and height. Figure 1
shows the relationship of a sub-image to an image.

DX

DY

X

Y

PITCH

HEIGHT

Figure 1 - Work Image / Sub-image relation

Narrowing the sub-image
can speed up processing for
some operations.

A sub-image area is a rectangular region offset from the upper left corner
(ULC) of the work image. The upper left corner of the sub-image is
offset (X,Y) pixels from the ULC of the work image, and its size is DX
pixels wide by DY pixels high.
Even though the sub-image is only DX pixels wide, pixels on adjacent
lines are still PITCH pixels apart. This must be true in order for the sub-
image to form a sliding window across the work image.
Sub-images allow for region-of-interest selection of image data. You
may only be concerned with a small area of the whole image, and
narrowing down the active sub-image area can speed processing time
for some applications. You can vary the sub-image definition by calling
ampSetImageMetrics.

AMPLIB- Software Developer’s Toolkit Introduction to AMPLIB Programming 17

Alias Images
Alias images can simplify
region-of-interest
processing of image data.

An alias image is just a special type of sub-image. An alias image has
no storage of its own; it is derived from a base work image, shares
storage with the work image, but possesses its own values for X, Y, DX,
and DY. A work image may have any number of alias images, each with
its own unique name.

Alias images may be used as
either a source or
destination image with most
AMPLIB API's.

Alias images offer an advantage over modifying the sub-image definition
for a work image. For example, you could have a work image named
'Original' and an alias of 'Original' named 'Sub'. You can always refer to
the whole image with the name 'Original' regardless of the definition of
'Sub'. You needn't clutter your code by continually changing the sub-
image definition back and forth.
NOTE: When working with variable size work images, it is important
to remember that the work image may be reallocated to completely
different dimensions each time it is the destination image of some
toolkit operation. So you should always create the alias image after the
work image is loaded and/or processed.
In general, wherever a work image can be used, an alias image can be
used also. In the API descriptions that follow, the term image, when
unqualified, means either a work image or an alias image.
In general, local alias images may not be used as a destination, only as
an image source. There are some exceptions to this rule, such as the
ampCopyImage function.

AMPLIB Software Developer’s Toolkit Compiling and Linking 19

Compiling and Linking

Overview
This section describes the process for compiling and linking an
AMPLIB program written in Microsoft C.
C programs should include the header file “amplibapi.h”. The header
file has complete prototype descriptions of the API functions that are
available.
Your program should be linked with “amplib.lib”, which is an import
library that contains the DLL linkage information.
To shut down your application, you should intercept the WM_CLOSE
message and call ampFreeAllImages to perform AMPLIB memory
cleanup. Other exit paths in your application should post or send a
WM_CLOSE to your application's window, rather than calling
PostQuitMessage() directly, to ensure that the WM_CLOSE code is
performed.

 case WM_CLOSE:
 ampFreeAllImages();
 DestroyWindow(hWnd);
 return 0;

Other API’s are called as needed to implement your solution. See the
source code example for details.

20 Compiling and Linking AMPLIB Software Developer’s Toolkit

Build Process
Build a project with your Visual C++ Development System, and include
the appropriate AMPLIB library file in your Settings|Linker options,
and the ..\amplib\include directory in the Settings|Preprocessor
options. Compile and link as with any other C program.

C++ Compiles
When compiling in C++ mode, you must be sure that the compiler
interprets the names in standard “C” mode, rather than using C++
decoration. Use the following format to include the header files:

extern “C” {
 #include “amplibapi.h”
}

AMPLIB- Software Developer’s Toolkit The AMPLIB API 21

The AMPLIB API

Overview
This chapter describes the AMPLIB API (Applications Programming
Interface) available to C/C++ programs and other DLL compatible
languages.

Summary of AMPLIB APIs
Image Management Functions

ampCreateWorkImage
ampCreateGrayWorkImage
ampCreateColorWorkImage
ampCreateImageAlias
ampFreeImage
ampFreeAllImages
ampGetImageMetrics
ampGetGrayImageMetrics
ampGetImageResolution
ampSetImageMetrics
ampSetImageResolution

MICR Functions
ampFieldVerify
ampFieldVerifyEx
ampParseMicr
ampPrepMicr
ampReadMicr
ampReadCamera
ampReadMicrCamera
ampReadScannerForChecks
ampReadMicrRepair
ampVoteIRDRepair
ampVoteIRDRetry
ampVoteMicrRepair
ampVoteMicrRetry

Bar Code Functions
ampReadBarCodes
ampGetBarCodeData

22 The AMPLIB API AMPLIB- Software Developer’s Toolkit

OCR Functions
ampReadOcr

File Functions
ampCreateDIB
ampCreateDIBSection
ampLoadClipboard
ampLoadDIB
ampLoadDIBHandle
ampLoadDIBSectionHandle
ampLoadImage
ampLoadImageHnd
ampLoadImageBuffer
ampSaveClipboard
ampSaveImage
ampSaveImageHnd
ampSetImageMargins
ampSetInputImageMetrics

Image Manipulation Functions
ampBitBltImage
ampClearImage
ampConvertImage
ampCopyImage
ampDeSkew
ampDitherImage
ampFillImage
ampGrayMirrorImage
ampGrayProcesses
ampGrayScaleResolution
ampInvertImage
ampMirrorImage
ampOutsideFillImage
ampRotateImage
ampScaleImage
ampThresholdImage

Image Filtering Functions
ampDeBorder
ampDeLine
ampDeShade

AMPLIB- Software Developer’s Toolkit The AMPLIB API 23

ampDeSpec
ampDeStreak
ampFilterImage

Miscellaneous Functions
ampAssembleMICR
ampCheckImageQuality
ampGetImageAddress
ampGetImageBlock
ampGetImageInfo
ampGetLicenseInfo
ampGetMessageText
ampGrayGetImageBlock
ampGrayPutImageBlock
ampPutImageBlock
ampTrace
ampTraceEnable

24 The AMPLIB API AMPLIB- Software Developer’s Toolkit

API Description Format
The following sections describe the actual AMPLIB API’s. They are
grouped by category and presented alphabetically in each group.

ampSampleAPI(arg1 ,arg2 ,arg3)

type arg1;
type arg2;
type arg3;

The descriptive text will have details on the arguments and purpose of
the call.

The first argument is typically a Pointer/Handle to a PWORKIMAGE
structure that defines all of the attributes and contents of the image.
Text arguments that select function options or modes are not case
sensitive. For example, "noheader" and "Noheader" and "NOHEADER"
are all equivalent.
Some functions use a ampRECT structure to pass a sub-image
definition. This structure is analogous to the Windows RECT struct,
except that ampRECT is defined using long ints. This ampRECT
structure will always be used as follows:

rect.right = DX
rect.bottom = DY
rect.left = X
rect.top = Y

Most functions return 0 for successful completion, non-zero if an error
was detected in the call. The error returns are defined in AMPLIBAPI.H
as ampERR_xxxx.
Note that API's are also listed in the index sans the 'amp' prefix to make
topical lookup easier.

AMPLIB- Software Developer’s Toolkit Image Management Functions 25

Image Management Function
This set of functions is concerned with managing the work image space.
Work images are referenced by pointer only; the actual contents of the
work image structure is irrelevant to the user. Work images are created
in response to an API function call, and all storage management is
automatic. Your program can release the image space by calling
ampFreeAllImages.

ampCreateWorkImage

int ampCreateWorkImage(&pW, maxwidth,
maxheight)

PWORKIMAGE *pW;
long maxwidth;
long maxheight;

Warning: loading a color or
grayscale file into a binary
will cause the data to be
thresholded and stored as a
binary image.

Creates a binary work image with the identifier pW which is
a pointer to the work image structure created by AMPLIB.
AMPLIB will allocate all memory needed for the workimage
structure and update the value of pW with the pointer to that
memory.
Images may be created as either fixed size or variable size images. For
almost all applications, variable size images are your best choice.
Variable size images are reallocated on demand to adapt to the needed
memory requirements. Fixed size images retain a fixed amount of
memory during their lifetime; they are primarily used when it is desired
to "tile" output into a mosaic of sub-images.
You create a variable size image by setting both maxwidth and
maxheight to zero. If a fixed size work image is desired, both maxwidth
and maxheight must be non-zero. The work image metrics will be
initialized as follows:

X = Y = 0
DX = PITCH = maxwidth
DY = HEIGHT = maxheight

Note that the PITCH value for work images will always be rounded up
to the nearest multiple of 32. The image metrics can be modified with
the ampSetImageMetrics API.
This API always returns 0 if the function was successful, non-zero
otherwise.
Normally, variable size images will be the best choice and the image
space will grow or shrink as needed. In some cases, though, a fixed size
image will be the better choice. When a variable size image is given as
the destination result of some image processing operation, the
destination image will be re-sized in accordance with the result. When a
fixed size image is given as the destination image, the resulting image
will be placed in the active sub-image. If the sub-image area is too
small, an error will be generated. Using fixed size images allows you to
control the "tiling" of image data from various image operations. If a
fixed size image needs to be made bigger or smaller, it must first be
destroyed and then re-created.

26 Image Management Functions AMPLIB- Software Developer’s Toolkit

Example:
ampCreateWorkImage(pWMyimage, 0, 0);
ampCreateWorkImage(pWOther, 2528, 3296);

AMPLIB- Software Developer’s Toolkit Image Management Functions 27

ampCreateGrayWorkImage

int ampCreateGrayWorkImage(&pW, maxwidth,
maxheight)

PWORKIMAGE *pW;
long maxwidth;
long maxheight;

Warning: Loading a binary
file into a grayscale work
image will cause the work
image to become binary. The
user should verify the "bits
per pixel" value for a work
image before loading and
"free and create" the image
before loading a new file.
This restriction is necessary
for support of fixed size work
images.

Creates an 8-bit grayscale work image with the identifier pW
which is a pointer to the work image structure created by
AMPLIB. AMPLIB will allocate all memory needed for the
workimage structure and update the value of pW with the pointer
to that memory.
Images may be created as either fixed size or variable size
images. For almost all applications, variable size images are your
best choice. Variable size images are reallocated on demand to
adapt to the needed memory requirements. Fixed size images
retain a fixed amount of memory during their lifetime; they are
primarily used when it is desired to "tile" output into a mosaic of
sub-images.

You create a variable size image by setting both maxwidth and
maxheight to zero. If a fixed size work image is desired, both maxwidth
and maxheight must be non-zero. The work image metrics will be
initialized as follows:

X = Y = 0
DX = PITCH = maxwidth
DY = HEIGHT = maxheight

Note that the PITCH value for work images will always be rounded up
to the nearest multiple of 32. The image metrics can be modified with
the ampSetImageMetrics API.
This API always returns 0 if the function was successful, non-zero
otherwise.
Normally, variable size images will be the best choice and the image
space will grow or shrink as needed. In some cases, though, a fixed size
image will be the better choice. When a variable size image is given as
the destination result of some image processing operation, the
destination image will be re-sized in accordance with the result. When a
fixed size image is given as the destination image, the resulting image
will be placed in the active sub-image. If the sub-image area is too
small, an error will be generated. Using fixed size images allows you to
control the "tiling" of image data from various image operations. If a
fixed size image needs to be made bigger or smaller, it must first be
destroyed and then re-created.

Example 1:

ampCreateGrayWorkImage(pWMyimage, 0, 0);
ampCreateGrayWorkImage(pWOther,2528,3296);

Example 2:

// Mixed binary and gray files
// hGlobalGray already exits

28 Image Management Functions AMPLIB- Software Developer’s Toolkit

rc = ampGetGrayImageMetrics (hGlobalGray,
dx, dy, ix, iy, pitch, height, bpp) ;
if (rc=0)
{
 if (bpp = 1) // bpp is bits per pixel

{ // Previous load was binary
 // release and create a gray

ampFreeImage(hGlobalGray);
ampCreateGrayWorkImage(hGlobalGr
ay, 0, 0);

 }
}

AMPLIB- Software Developer’s Toolkit Image Management Functions 29

ampCreateColorWorkImage

int ampCreateColorWorkImage(&pW, maxwidth,
maxheight, params)

PWORKIMAGE *pW;
long maxwidth;
long maxheight;
int params;

Warning: Loading a TIFF
binary or grayscale file into
a color work image will
demote the work image to
either binary or grayscale
respectively. The user should
verify the "bits per pixel"
value for a work image before
loading and "free and create"
the image before loading a
new file. This restriction is
necessary for support of fixed
size work images.

Creates a 32-bit color work image with the identifier pW which is
a pointer to the work image structure created by AMPLIB.
AMPLIB will allocate all memory needed for the workimage
structure and update the value of pW with the pointer to that
memory.
Images may be created as either fixed size or variable size
images. For almost all applications, variable size images are your
best choice. Variable size images are reallocated on demand to
adapt to the needed memory requirements. Fixed size images
retain a fixed amount of memory during their lifetime; they are
primarily used when it is desired to "tile" output into a mosaic of
sub-images.

You create a variable size image by setting both maxwidth and
maxheight to zero. If a fixed size work image is desired, both maxwidth
and maxheight must be non-zero. The work image metrics will be
initialized as follows:

X = Y = 0
DX = PITCH = maxwidth
DY = HEIGHT = maxheight

Note that the PITCH value for work images will always be rounded up
to the nearest multiple of 32. The image metrics can be modified with
the ampSetImageMetrics API.
This API always returns 0 if the function was successful, non-zero
otherwise.
Normally, variable size images will be the best choice and the image
space will grow or shrink as needed. In some cases, though, a fixed size
image will be the better choice. When a variable size image is given as
the destination result of some image processing operation, the
destination image will be re-sized in accordance with the result. When a
fixed size image is given as the destination image, the resulting image
will be placed in the active sub-image. If the sub-image area is too
small, an error will be generated. Using fixed size images allows you to
control the "tiling" of image data from various image operations. If a
fixed size image needs to be made bigger or smaller, it must first be
destroyed and then re-created.

Example 1:

ampCreateColorWorkImage(pWMyimage,0,0,0);
ampCreateColorWorkImage(pWNext,2528,3296,0);

Example 2:

30 Image Management Functions AMPLIB- Software Developer’s Toolkit

// Mixed binary, gray, and color files
// pWColor already exists
rc = ampGetGrayImageMetrics (pWColor, dx,
dy, ix, iy, pitch, height, bpp) ;
if (rc=0)
{
 if (bpp < 32) // bpp is bits per pixel

{ // Previous load was not color
 // release and create a color

ampFreeImage(pWColor);
ampCreateColorWorkImage(pWColor,
0, 0, 0);

 }
}

AMPLIB- Software Developer’s Toolkit Image Management Functions 31

ampCreateImageAlias

int ampCreateImageAlias(pW, pWAlias)

PWWORKIMAGE pW;
PWWORKIMAGE * pWAlias;

This function creates an alias image for the work image pW. The alias
work image may be referenced with pWAlias. Alias images are
particularly useful in working with sub-images of a given work image,
also known as a region-of-interest. As many alias images as desired may
be created for any work image. This allows you to create multiple sub-
images and reference them by name, while still having the entire work
image definition available at all times.
The alias image receives all the attributes of its base work image, but
retains its own definitions for X, Y, DX, and DY (the sub-image
metrics). The initial values for the alias image metrics are the same as its
base work image at the time of creation of the alias. The alias image
remains in existence until it is destroyed explicitly, or its base image is
destroyed.
Note the importance of the qualifier, "at the time of creation", in the
preceding paragraph. If an alias is created from a variable size work
image prior to storing anything in that work image, the alias will have a
sub-image definition of X=Y=DX=DY=0. You must define the alias
image metrics first before using the alias image by calling
ampSetImageMetrics. Do this after its base image has been loaded
with image data, or the alias may produce undefined results.
This API always returns 0 if the function was successful, non-zero
otherwise.
Example:

ampLoadImage(pWMyimage, fname, opts,
 ctype,imgnum);
ampCreateImageAlias (pWMyimage, &pWAlias);
ampSetImageMetrics(pWAlias, 512, 256,
 1024,1024);

32 Image Management Functions AMPLIB- Software Developer’s Toolkit

ampFreeAllImages

int ampFreeAllImages()

This API removes all images and frees up all the workspace allocated
for them.
This API always returns 0 if the function was successful, non-zero
otherwise.

AMPLIB- Software Developer’s Toolkit Image Management Functions 33

ampFreeImage

int ampFreeImage(pW)

PWORKIMAGE pW;
This API removes the image pW from the list of known images. Any
alias images derived from it will also be destroyed. Any storage
allocated for the image will be freed. If the image pW does not exist, the
function will do nothing and return a normal success code.
This API always returns 0 if the function was successful, non-zero
otherwise.

34 Image Management Functions AMPLIB- Software Developer’s Toolkit

ampGetGrayImageMetrics

int ampGetGrayImageMetrics(pW, Dx, Dy, X, Y,
Pitch, Height, BitsPerPixel)

PWORKIMAGE pW;
LPLONG Dx, Dy;
LPLONG X, Y;
LPLONG Pitch, Height;
LPLONG BitsPerPixel ;

This API returns the present values of the image metrics for image pW.
NULL can be used for arguments that are not needed by your program.
It can be used with bilevel, grayscale, or color work images.

This API always returns 0 if the function was successful, non-zero
otherwise.

Example:

ampGetGrayImageMetrics (pWMain, &dx, &dy,
&x, &y, NULL, NULL,
&BitsPerPixel);

AMPLIB- Software Developer’s Toolkit Image Management Functions 35

ampGetImageMetrics

int ampGetImageMetrics(pW, Dx, Dy, X, Y,
Pitch, Height)

PWORKIMAGE pW;
LPLONG Dx, Dy;
LPLONG X, Y;
LPLONG Pitch, Height;

This API returns the present values of the image metrics for image pW.
NULL can be used for arguments that are not needed by your program.
This API always returns 0 if the function was successful, non-zero
otherwise.
Example:

ampGetImageMetrics (pWMain, &dx, &dy,
 &x, &y, NULL, NULL);

36 Image Management Functions AMPLIB- Software Developer’s Toolkit

ampGetImageResolution

int ampGetImageResolution(pW, Xres, Yres)

PWORKIMAGE pW;
LPLONG Xres, Yres;

This API returns the present resolution values for binary, grayscale, or
color image pW. These values are set when an image is loaded or
scanned, or by ampSetImageResolution. When an image is processed
from one image to another, resolution values are propagated to the new
image. Images must have a valid resolution in order to be processed
correctly by the ampReadMicr function. Check images loaded from the
clipboard with the ampLoadClipboard function should be verified for
valid resolution values.
This API always returns 0 if the function was successful, non-zero
otherwise.
Example:

ampGetImageResolution(pWMain, &Xres, &Yres);

AMPLIB- Software Developer’s Toolkit Image Management Functions 37

ampGetRunsInfo

int ampGetRunsInfo(pW, params)

PWORKIMAGE pW;
ampRUNSINFO *params;

This function analyzes the binary image pW and returns information
that can be used to gauge the level of change that has occurred, or to
perform blank page detection. The information is returned in the
ampRUNSINFO block.
The fields of ampRUNSINFO are defined as follows (see interface
reference file for latest definition).

typedef struct of_AMPRUNSINFO {
 int MinWidth;
 int MaxWidth;
 // results output
 long TotalPixels ;
 long TotalRuns ;
} ampRUNSINFO;

MinWidth is the minimum horizontal pixel width of black runs to use in
measurements.
MaxWidth is the maximum pixel width of black runs to use in
measurements.
TotalPixels is the total number of black pixels found in the image.
TotalRuns is the total number of black runs found in the image.

This API always returns 0 if the function was successful, non-zero
otherwise.
Example:

ampGetRunsInfo(pWMain, &runsInfo);

38 Image Management Functions AMPLIB- Software Developer’s Toolkit

ampSetImageMetrics

int ampSetImageMetrics(pW, dx, dy, x, y)

PWORKIMAGE pW;
long dx, dy;
long x, Y;

This API changes one or more of the image metric values for the binary,
grayscale, or color image pW. Only the sub-image metrics are modified;
the storage allocation for the image will not be changed. The values will
be checked for arithmetic correctness, e.g.,
 x + dx must be <= pitch
 y + dy must be <= height
If the value ARGSKIP is used for any argument other than pW , the
corresponding image metric will be unchanged.
This API always returns 0 if the function was successful, non-zero
otherwise.

AMPLIB- Software Developer’s Toolkit Image Management Functions 39

ampSetImageResolution

int ampSetImageResolution(pW, Xres, Yres)

PWORKIMAGE pW;
long Xres;
long Yres;

This API sets the resolution information for the binary, grayscale, or
color work image pW. This function can be used when AMPLIB cannot
determine the resolution in some other way, such as a clipboard image,
TIFF header, etc. The image resolution information is propagated from
source image to destination image during AMPLIB execution. Images
must have a valid resolution in order to processed correctly by the
ampReadMicr function. Check images loaded from the clipboard with
the ampLoadClipboard function should be verified for valid resolution
values.
This API always returns 0 if the function was successful, non-zero
otherwise.
Example:

 ampSetImageResolution(pWApp, 200, 200);

 AMPLIB-Software Developer’s Toolkit MICR Functions 41

MICR Functions
This group of functions provides for reading the MICR shapes from an
image and placing the resulting ASCII codes into an appropriate data
structure. There are 2 basic types of functions provided. MICR OCR
and MICR Verify.

MICR OCR functions will read the MICR line data from an image.
These functions use multiple OCR engines and voting technology to
produce an accurate result. Produces best and secondary read choices
with confidence levels. Application developers have options to invoke
image repair functions. Additional image processing functions from the
SDK can be used to preprocess the image before OCR recognition to
correct for skew and image border affects.

The API also has a set of super functions for processing checks captured
by non traditional check scanners (page scanners, low cost scanners,
cameras). These functions use image preprocessing functions to crop,
deskew, threshold, and correct for image distortions caused by the non
traditional check image capture process. These functions also provide
the ability to process the image of a mulipart remittance form(E.g.
8.5X11 page with a check attached top or bottom). These functions will
locate the check, read the MICR line and extract the check image.

MICR Verify functions will read the MICR from an image but will use
previously captured MICR data to assist in the process. There are
different applications that can use MICR Verify technology so there are
a family of functions each using a different set of inputs, outputs and
processing rules. All MICR Verify functions use a fast OCR engine to
verify the easy to read items that usually represent the majority of the
cases. Image repair, additional OCR engines, and OCR retry operations
are used on the harder to read items as required to verify the most
difficult to read items. The combined result is higher throughput with
higher accuracy.

42 MICR Functions AMPLIB- Software Developer’s Toolkit

Camera Feature License

The Camera license bit can be used with any ReadMicr function and it
is not restricted to ampReadMicrCamera/ampReadCamera function
calls. The Camera license enable character by character voting amongst
three different AmpLib engines. One engine has been heavy trained
using camera based images. The result is higher read rates and lower
substitution rates on the most difficult images. The Camera license is
required with the ampReadMicrCamera/ampReadCamera function calls.
In their cases, the low level voting within ampReadMicr is combined
with high level image processing on the gray/color images to improve
read rates and lower substitution rates even more.

MICR Verify Functions
MICR Verify – Check
Can be used in capture systems to detect and correct for errors in
hardware captured MICR data. Uses the hardware captured MICR data
with the image to detect and correct for rejects, substitutions and missed
data.
Refer to functions:

 ampVoteMicrRepair
 ampVoteMicrRetry

MICR Verify – IRD
Regulatory policy requires that the MICR line encoded on an IRD must
match the MICR line of the original item. This function will input the
MICR field data from a X9.37 Image Cash Letter file with the check
image to produce an accurate MICR line that can be applied to the IRD.
X9.37 MICR field data is missing dashes, special symbols, and often
contains errors requiring a verify OCR process to produce accurate
IRDs. This same function can be used to detect and correct for errors in
X9.37 MICR field data.
Refer to functions:

 ampVoteIRDRepair
 ampVoteIRDRetry

MICR Verify – Error Detection and Usability Analysis
Will detect images whose source document was different than the item
the associated captured MICR data came from. This function will input
the image and the MICR field data associated to the image and return
results that can be used to validate if the MICR and image came from
the same source document. The function will return the parsed OCR
field data read from the image with a match confidence level. Two
different versions of this function are provided to accommodate MICR
field data from a X9.37 file (RT, Aux on-us, On-us, Amount) or from a
database/capture file (RT, Account Number, Serial Number, Amount).
Verify accuracy is very high as these function will ignore dashes,
special symbols and leading zeros in the OCR processing.

 AMPLIB-Software Developer’s Toolkit MICR Functions 43

This function will also verify the image usability of the MICR codeline
on the image by ensuring the MICR field data is both present and
legible.
Refer to functions:

 ampFieldVerify
 ampFieldVerifyEx

MICR Parameters
The parameters are contained in the structure ampMICRINFO as
shown below.

typedef struct of_ampMICRINFO {

 int lastchar;
 char resultchar[100];
 char bestchar[100];
 int percent[100];
 char infile[256];
 char outfile[256];
 char translater[256]
 int Dorepair;
 int Do180;
 int DoneRepair ;
 int Done180 ;
 int Filter ;
 int Resolution

 int Code ;
 int NoBlanks ;
 int UseTranslator ;
 int NoRules ;
 int Rules ;
 int MinCon ;
 int char_x[100];
 char route[20];
 char account[20];
 char check[20];
 char amount[20];
 char epc[20];
 int DoImageRepair;
 long MaxTime ;
 long StartTime;
 double Skew;

 } ampMICRINFO;

lastchar
The number of characters in the result array. It can also be considered a
pointer to the new line character at the end of a sting.

resultchar
The resulting character string from the read. The valid length is
determined by lastchar. The resulting character array will include
"misread" characters as determined by the user supplied controls on
minimum confidence and rules.

bestchar
The best character string from the read. This are the best characters
found even though they may not pass the tests needed to be a resultchar.

percent

44 MICR Functions AMPLIB- Software Developer’s Toolkit

The array containing the confidence percentage associated with the best
characters found.

infile
The fully delimited file name of the character shape definition file
"storage.dat"

outfile
This file name is always set to a null string.

translator
This table translates the internal codes to those desired by the user. For
example, the default translation table uses an '*' for a character misread.
By loading this table (and setting the UseTranslator parameter) the user
will have their own character presentation. The table contents will also
vary depending on the code being translated, i.e. E13B will have fewer
characters than CMC7.

Translation Table

Location Meaning MICR Default
0 '0' '0' '0'
1 '1' '1' '1'
2 '2' '2' '2'
3 '3' '3' '3'
4 '4' '4' '4'
5 '5' '5' '5'
6 '6' '6' '6'
7 '7' '7' '7'
8 '8' '8' '8'
9 '9' '9' '9'
10 Routing 'A'
11 Amount 'B'
12 On Us 'C'
13 Dash 'D'
14 Blank ' ' ' '
15 Misread NA '*'
16 Best is same as Selected NA 'N'

Dorepair
When this parameter is set and if any read errors are detected in the
result data, then a temporary copy of the input image is repaired based
on the results of the first read. The repaired image is then used for a
second MICR read. The two MICR read results are then voted upon and
the result of the vote is reported. When doing image repair and
reprocess, the execution times will be about twice as long for images
which have read errors in the first pass.

Do180

 AMPLIB-Software Developer’s Toolkit MICR Functions 45

If a MICR line cannot be detected on the bottom of the input image,
then a temporary copy will be created and rotated 180 degrees before
attempting to perform another MICR read. The read of the original line
will be considered unsuccessful if it has less than 4 valid characters and
any unreadable characters.

DoneRepair
This is an output parameter that indicates if image repair was performed
to get the result.

Done180
This is an output parameter that indicates that the image was turned 180
to get the result. The result reflects what was found at the top of the
input image.

Filter
This is an output parameter that reports the type of image and implies
the filter that was used to repair the image when the DoneRepair
parameter is set. The results are AmpNeutral, AmpLight and AmpDark.
A Neutral image is repaired with a noise removal filter. A Light image
is repaired with a morphological darkening filter. A Dark image is
repaired with a morphological lightening filter.

46 MICR Functions AMPLIB- Software Developer’s Toolkit

Resolution
The image must have a good approximation to its actual resolution.
AmpLib is not simply a MICR OCR engine but it is really a "check
reader". The resolution information is needed to determine where the
bottom approximately 5/8" of a check is located. Forcing resolution
with this parameter is normally not an issue since the image file will
generally contain this information. In some situations the resolution is
not included in the file data and in those cases a non-zero value for the
Resolution parameter will be used. NOTE: The input image (pW) will
have the resolution set if the input value is >= 0.
Input values:
 < 0 : Use image resolution

==0 : Try to estimate image resolution
 > 0 : Use this parameter for resolution.

Code
The type of MICR code being read:
E13B (AmpE13B)
CMC7 (AmpCMC7) (NA)
E13B non US (AmpE13BNonUS). The default value of 0 is E13B.

NoBlanks
An input parameter set to a 1 when the output will have blanks
removed.

UseTranslator
An input parameter set to a 1 when the translator table is to be used.

NoRules
An input parameter set to a 1 when the internal banking rules are to be
ignored. This is normally used when the input image is only a portion of
a MICR line.

Rules
The national banking association rules to apply. Currently this is only
the ABA rule set from the US.

 AMPLIB-Software Developer’s Toolkit MICR Functions 47

MinCon
An input parameter describing the Minimum Confidence value that
should be used to accept or reject a character. The value range is
between 0 and 99 but the only reasonable values are between 80 and 90.
Setting the value too high will reject characters that are read correctly.
Setting the value too low will cause the acceptance of characters which
are misreads or substitution errors.
The user must decide the best parameter value based on testing with
their data set and with their set of needs. In general, good images do not
cause substitution errors. It is corrupted images that cause problems. In
all cases, a substitution error rate over a large data set is still expected to
be a fraction of one percent. The following information is based on
testing a wide range of images with the toolkit.
A MinCon of 80 is recommended for doing verification. It will generate
some substitution errors on corrupted images but since it is being
compared to another result, this effect is minimized.
A MinCon of 85 is recommended for general usage. This will reduce
the substitution rate and only nominally reduce the read rate.
A MinCon of 89 is recommend for the lowest substitution error rate
without dramatically reducing the read rate.

char_x
The x pixel location (from left edge of image) for each result character.
This is often used in voting between/amongst different OCR engines.

route
The Route/Transit field as a separate string.

account
The Account field as a separate string.

check
The Check number field as a separate string.

amount
The Amount field as a separate string.

epc
The External Processing Code (EPC) field as a separate sting.

DoImage Repair
Output a repaired image

MaxTime
Limit the time to process an image. Input of 0 for no limits. Limits are
input in units of hundreds of a second. A value of 50 is one half a
second.
StartTime

48 MICR Functions AMPLIB- Software Developer’s Toolkit

This must always be a 0 upon input. Upon return, the output value is
the start time using the timeb structure value in hundreds of a second.

Skew
The slope(dy/dx) of the MICR text line. The origin of the image is the
upper left corner so sign of the slope will be reversed from lower left
origin.

 AMPLIB-Software Developer’s Toolkit MICR Functions 49

How final character selection is determined
The MinCon value is the primary determining factor in "selecting"
or not selecting a character when no other factor is involved,
however, many times other factors are involved. These factors
include user-controlled parameters such as "repair image voting"
and "banking rules enforcement". In addition, internal limits are
enforced. For example, a character, which is too dark relative to its
neighbors, will often be treated as indeterminate. Another internal
limit is "minimum distance" between two confidence values. The
OCR engine has preset values, which indicate that two results are
"too close to call" even though they may meet MinCon
requirements.
The "Dorepair" parameter causes the creation of a second check
image which will then be repaired. It is possible to have two
different characters with high confidence values from the two
images. The Dorepair voter will report an indeterminate in this case
even though the MinCon values for both may be very high. (Note:
The typical cause for such an event is very different character
segmentation between the two images.)
The use of banking "Rules" may both select or deselect a character
in a fashion that would be counter indicated by its confidence
value. A character may be selected if it is the "best" character, but
not at the minimum confidence level, when a banking rule says that
the best should occur at this point. For example, in the ABA rules
an amount field is 10 digits and 2 control codes. If a character for
one of the control codes is in the proper position and it is the "best"
but not selected, then the use of a rule will promote it to "select".
A banking rule may also deselect a character or even delete one that
meets MinCon conditions. For example, in the ABA rules, there
are no valid characters beyond the amount field. Stray characters at
this point may be deleted from the data set when a valid amount
field can be determined.

50 MICR Functions AMPLIB- Software Developer’s Toolkit

ampAnalyzeResolutionEx

int ampAnalyzeResolutionEx (pInfo,
pnHorizResolution, pnVertResolution,
pnRCCRating)

ampMICRINFO *pInfo;
int *pnHorizResolution;
int *pnVertResolution;
int *pnRCCRating;

The ampAnalyzeResolutionEx extracts information from the pInfo
structure following a MICR read operation such as ampReadMicr. In
addition to performing MICR recognition ampReadMicr analyzes the
relative horizontal positions of characters that were read with high
confidence and establishes the average horizontal resolution of the
check image. It also uses the average height of these characters to
determine the vertical resolution. Note that check images captured from
handheld cameras my have different horizontal and vertical resolutions
if the camera angle was not directly perpendicular to the surface of the
check. In addition, the shapes and OCR scores of identical numbers are
compared to see how similar the morphology is for each of the numbers
from 0-9. This figure is called the RCCRating and is a measure of
whether the check was likely scanned or computer generated. A value
90 percent or higher indicates the check image was probably computer
generated. A value lower than 90 indicates the image originally came
from a paper check.

Example:

nStat = ampAnalyzeResolutionEx(pInfo,
&nHorizResolution, &nVertResolution,
&nRCCRating);

 AMPLIB-Software Developer’s Toolkit MICR Functions 51

ampFormatMICRFields

int ampFormatMICRFields(szInput, nFilter,
szTranslator, szOutput, szAuxOnUs,
szEPC, szRoute, szOnUs, szAmount)

char *szInput;
int nFilter;
char *szTranslation;
char *szOutput;
char *szAuxOnUs;
char *szEPC;
char *szRoute;
char *szOnUs;
char *szAmount;

The ampFormatMICRFields API accepts as input raw MICR ASCII
string data pointed to by szInput and then formats that data into several
output strings. The input data is passed through the translation table
szTranslator (if the pointer is non-null) in order to make the characters
compatible with AmpLib. The formatting algorithm uses the OnUs,
Route, and Amount symbols to parse through the input data marking the
beginning and ending of fields. Parsing problems caused by OCR errors
are counted and returned to the calling program in the return code. If
nFilter is nonzero, then any characters that precede a legitimate
AuxOnUs field will be erased prior to formatting. If there were no
parsing problems, the API will return 0.
 If non-null, szOutput points to the formatted 62 byte MICR data. The
traditional field byte boundary assignments after formatting are:

0-16 AuxOnUs field - length: 17 bytes
18 EPC Code - length: 1 byte
19-29 Route field - length 11 bytes
30-49 OnUs field - length 20 bytes
50-61 Amount field - length 12 bytes

Field data that is not present in the original input will be filled with
space characters. Each output field is copied to its appropriate string
(szAuxOnUs, szEPC, szRoute, etc.) provided the pointer to that string is
non-null. All output strings are passed through the translation table
szTranslator (if the pointer is non-null) in order to provide the calling
program compatible character data.

Example:

nStat = ampFormatMICRFields(&szInputMICR[0],
0, NULL, &szOutputMICR[0], NULL, NULL, NULL,
NULL, NULL);

ampFieldVerifyEx

int ampFieldVerifyEx (pW, pInfo, phInfo,
prInfo,ConfidenceMin,
ConfidenceResult,

52 MICR Functions AMPLIB- Software Developer’s Toolkit

InputFieldPresent,engineLevel,
allVerify)

PWORKIMAGE pW;
ampMICRINFO *pInfo;
ampMICRINFO *phInfo;
ampMICRINFO *prInfo;
ampFIELDCONFIDENCE ConfidenceMin;
ampFIELDCONFIDENCE *ConfidenceResult;
ampFIELDCONFIDENCE *InputFieldPresent;
int *engineLevel;
int *allVerify;

The ampFieldVerifyEx API will verify that input MICR field data
matches the MICR codeline on the image. It ensures the usability of the
MICR codeline on the image and will detect items whose captured
MICR data and image data came from different source documents.

This function is called by “ampFieldVerify” that should support most
users. If you need to use this function for special cases please contact
AllMyPapers support for specific instructions and source code sample.

This function accepts as input the items image and the captured MICR
field elements (Routing number, account number, check serial number,
and check amount.). Returned will be the field data as read by the OCR
process. A confidence factor for each field is also returned indicating
the degree of match between the input and returned field data. Input
minimum confidence threshold values are also input for each field. The
function uses this confidence threshold to invoke “Try harder”
processing to be able to return a result with the required confidence
level.

Workimage “pW” will contain the source image. Currently only black
and white images are supported. “PInfo” will contain the parameters to
use for the OCR read process.

Structure “phInfo” is used to provide the input MICR field values.
Structure variables “route”, “account”, “check”, and “amount” are used
for this purpose. The field contents must only contain numeric
characters (no dashes or special symbols). The account, check number
and amount field strings can contain leading zeros or have them
removed. Leading zeros will be ignored in the verification process
except for routing numbers. The routing number only need to be 8
digits in length (no check digit) but will also accept the 9 digit format.

Structure “prInfo” returns the MICR field contents as read from the
check image. In this case the entire field is returned with leading zeros.
No special symbols or dashes are returned with the exception of the
routing number where a dash will be returned for a “4-4” format.
“prInfo->results” will return the entire codeline for the OCR read of the
last OCR engine process used. This does not combine the results of the
different OCR reads and should not be relied on as the best read.

Confidence Values

 AMPLIB-Software Developer’s Toolkit MICR Functions 53

 See “ampFieldVerify” for the table of field confidence values returned
by this function.
Confidence Values

Confidence
Score

Description

99 All characters match at above min confidence (“MinCon”)
specified in “piInfo” structure.

98 to 94 All characters match with best choice.
(99 minus number of best choice matches)

93-86 All characters match but some unreadable by OCR.
(93 minus # unreadable characters)

85-81 characters match except for some missing on OCR Result.
(85 minus number of missing characters)

80-71 Field Mismatch. OCR and reference do not agree.
(81minus number of characters that mismatch in reference
field,)

50 Field does not exist on codeline image. Indicates missing
codeline data (E.g. Missing check number or account
number)

40 Account reference field matches, but additional characters
returned in account number result. (Indicates presence of
transit field data, or short account number mapping)

Structure members of ampFIELDCONFIDENCE are:”route”,
“account”, “check”, and “amount”.

Structure “ConfidenceMin” will allow users to specify their required
minimum threshold per field. Valid settings for these fields are 0 or 81
to 99 as per the confidence table. Generally the lower the confidence the
faster the throughput as the OCR verification process will terminate
early once the minimum confidence threshold is achieved.

Structure “ConfidenceResult” will contain the returned confidence
values for each field.

Structure “InputFieldPresent” is used to indicate if you there is
reference field data provided for each field. For example you could set
InputFieldPresent->amount = 0, if the application did not need to verify
the amount field contents.

The OCR process can uses several OCR engine processes to verify the
field with the desired confidence level. “engineLevel” will return from
1-4 indicating the number of OCR engine processes it used to achieve
the result.

This function will also set “allVerify” if it successfully verifies all fields
at the min confidence levels.

54 MICR Functions AMPLIB- Software Developer’s Toolkit

ampFormatMICRFields

int ampFormatMICRFields(szInput, nFilter,
szTranslator, szOutput, szAuxOnUs,
szEPC, szRoute, szOnUs, szAmount)

char *szInput;
int nFilter;
char *szTranslation;
char *szOutput;
char *szAuxOnUs;
char *szEPC;
char *szRoute;
char *szOnUs;
char *szAmount;

The ampFormatMICRFields API accepts as input raw MICR ASCII
string data pointed to by szInput and then formats that data into several
output strings. The input data is passed through the translation table
szTranslator (if the pointer is non-null) in order to make the characters
compatible with AmpLib. The formatting algorithm uses the OnUs,
Route, and Amount symbols to parse through the input data marking the
beginning and ending of fields. Parsing problems caused by OCR errors
are counted and returned to the calling program in the return code. If
nFilter is nonzero, then any characters that precede a legitimate
AuxOnUs field will be erased prior to formatting. If there were no
parsing problems, the API will return 0.
 If non-null, szOutput points to the formatted 62 byte MICR data. The
traditional field byte boundary assignments after formatting are:

0-16 AuxOnUs field - length: 17 bytes
18 EPC Code - length: 1 byte
19-29 Route field - length 11 bytes
30-49 OnUs field - length 20 bytes
50-61 Amount field - length 12 bytes

Field data that is not present in the original input will be filled with
space characters. Each output field is copied to its appropriate string
(szAuxOnUs, szEPC, szRoute, etc.) provided the pointer to that string is
non-null. All output strings are passed through the translation table
szTranslator (if the pointer is non-null) in order to provide the calling
program compatible character data.

Example:

nStat = ampFormatMICRFields(&szInputMICR[0],
0, NULL, &szOutputMICR[0], NULL, NULL, NULL,
NULL, NULL);

 AMPLIB-Software Developer’s Toolkit MICR Functions 55

ampParseMicr

int ampParseMicr(pInfo, prInfo)

ampMICRINFO *pInfo;
ampMICRINFO *prInfo;

The ampParseMicr API accepts as input the MICR data from a previous
ampReadMicr call or MICR data from another source.
The input MICR data is in the pInfo->resultchar data structure. If the
check number is captured externally, it is entered in the pInfo-
>checknumber field. The parse uses general rules for field parsing.
Inputting the check number when known may improve the results.
The MICR data must have a valid ABA Routing number for the parse to
occur. If the data does not have a valid Routing number, it may be a
deposit entry or check from another country and the parse cannot occur.

Example:

pInfo->resultchar =
"a121000301a1121d95593c0625c" ;
pInfo->checknumber = "1121" ;
ampParseMicr(pInfo, prInfo) ;

The result Info block will have an account number of
"95593c0625" and a check number of "1121". Special codes
are generally not removed from the account number.

56 MICR Functions AMPLIB- Software Developer’s Toolkit

ampPrepMicr

int ampPrepMicr(pWs, pWd, pPrepInfo)

PWORKIMAGE pWs;
PWORKIMAGE pWd;
ampPREPINFO *pPrepInfo;

This API copies one workimage to another and while doing the transfer
performs image manipulations that prepare it for MICR reading. The
first step is to deskew the image in forms mode and crop any white or
black margin. The BlackEdges input variable must be set to activate
black margin removal. On completion, the SkewDetected variable will
be set the amount of skew AMPLIB saw in the image.
The process assumes that the result image should be "check" size and
makes decision based on that.
When the Rotate parameter is -1 or +1 then if after black/white edge
removal, the image has the short edge across the image, the image will
be rotated 90 degrees left or right. If Rotate is set to 0, no rotation
occurs and if set to +90 or -90 then right or left 90 degree rotation
always occurs. This API always returns 0 if the function was successful,
non-zero otherwise.

 The ampPREPINFO structure is shown below.

typedef struct of_ampPREPINFO {
 BOOL BlackEdges; // input 0,1
 double SkewDetected; // output

int Rotate ;
 // 0 --no rotation

// -1 --auto detect rotate left
// +1 --auto detect rotate right
// -90 -- rotate left always
// +90 -- rotate right always

int Resolution ;
// 0 -- use image resolution
// >0 -- use this as image
// resolution

 } ampPREPINFO ;

 A short example is shown below.

// Prep the image for MICR reading which may
// include deskew, scaling and rotation

if (bMICRBlackEdge)
 piInfo.BlackEdges = 1;
else

piInfo.BlackEdges = 0;
piInfor.Rotation = 0 ;
piInfor.Resolution = 0 ;
nStat = ampPrepMicr(pW, pWMicr,
(PAMPPREPINFO) &piInfo);

 AMPLIB-Software Developer’s Toolkit MICR Functions 57

58 MICR Functions AMPLIB- Software Developer’s Toolkit

ampPrepPage

int ampPrepPage(pWs, pWd, pPrepInfo)

PWORKIMAGE pWs;
PWORKIMAGE pWd;
ampPREPINFO *pPrepInfo;

This API copies one workimage to another and while doing the transfer
performs image manipulations that prepare it for page processing. The
first step is to deskew the image in forms mode and crop any white or
black margin. The BlackEdges input variable must be set to activate
black margin removal. On completion, the SkewDetected variable will
be set the amount of skew AMPLIB saw in the image.
The process is similar to ampPrepMicr but it does NOT assume that the
result image should be "check" size.
When the Rotate parameter is -1 or +1 then if after black/white edge
removal, the image has the short edge across the image, the image will
be rotated 90 degrees left or right. If Rotate is set to 0, no rotation
occurs and if set to +90 or -90 then right or left 90 degree rotation
always occurs. This API always returns 0 if the function was successful,
non-zero otherwise.

 AMPLIB-Software Developer’s Toolkit MICR Functions 59

ampReadMicr

int ampReadMicr(pW, pInfo)

PWORKIMAGE pW;
ampMICRINFO *pInfo;

This API is called to locate MICR shapes on the check image, convert
those shapes to corresponding ASCII codes, and then place those codes
in the output data structure. The ampMICRINFO structure is used to
initialize parameters for ampReadMICR as well as communicate output
results back to the calling program. This API always returns 0 if the
function was successful, non-zero otherwise.
In order to parse the MICR data into fields, the data line must have a
valid ABA Routing number for the parse to occur. If the data does not
have a valid Routing number, it may be a deposit entry or check from
another country and the parse cannot occur.

The ampMICRINFO structure is shown below.

typedef struct of_ampMICRINFO {
 int lastchar;

 char resultchar[100];
 char bestchar[100];
 int percent[100];
 char infile[256];
 char outfile[256];
 char translater[256]
 int Dorepair;
 int Do180;
 int DoneRepair ;
 int Done180 ;
 int Filter ;
 int Resolution

 int Code ;
 int NoBlanks ;
 int UseTranslator ;
 int NoRules ;
 int Rules ;
 int MinCon ;

 int char_x[100];
 char route[20];
 char account[20];
 char check[20];
 char amount[20];
 char epc[20];
 int DoImageRepair ;
 long MaxTime ;
 long StartTime ;
 } ampMICRINFO;

Before calling ampReadMicr, the infile variable must be filled with the
pathname of the file storage.dat that contains the definitions of the
character shapes that AMPLIB can read. Setting Dorepair to the value 1
tells AMPLIB to use morphological filters to process the input image in
an attempt to remove stray pixels and repair gaps in the MICR
characters. Setting Do180 to 1 enables AMPLIB to read MICR
characters that are upside down (rotated 180 degrees) if normal left-to-
right reading failed. Setting Dorepair and Do180 to zero will disable
these read options.

After calling ampReadMicr, the variable lastchar contains the number of
MICR characters read. Those characters plus additional preceding

60 MICR Functions AMPLIB- Software Developer’s Toolkit

spaces are located in the resultchar field. If a particular MICR shape
was not read with sufficient accuracy, an ‘*’ character is used to mark
its position. The fields bestchar and percent contain information
representing the confidence of the recognition process for a particular
character.

If the Resolution parameter is zero, meaning that it is requesting a
resolution estimate, it will return the estimate in the Resolution
parameter.

A short example program is shown below.

strcpy (ampMI.infile, szAppDirectory);
strcat (ampMI.infile, "\\storage.dat");
strcpy (ampMI.outfile,"");
ampMI.Dorepair = 0;
ampMI.Do180 = 1;
 ampMI.Resolution = - 1 ; // Use image resolution
 ampMI.Code = 0 ; // Default to E13B
 ampMI.NoBlanks = 0 ; // Report blanks
 ampMI.UseTranslator = 0 ; // Use default character translation
 ampMI.NoRules = 0; // Use ABA rules
 ampMI.Rules = 0 ; // ABA rules
 ampMinCon = 80 ; // Minimum confidence
ampMI.DoImageRepair = 0 ; // Do not output repaired image
ampMI.MaxTime = 0 ; // No limit on process time
ampMI.StartTime = 0 ; // Start must be zero
nStat = ampReadMicr (pW, (PAMPMICRINFO) &MI);

if (nStat == 0)
{

i = ampMI.lastchar;
 ampMI.resultchar[i] = 0;
 strcpy (szResults,"Results: ");
 strcat (szResults, ampMI.resultchar);

MessageBox(hWnd, szResults, "MICR Characters Read",
MB_OK);

}
else
{

wsprintf(szResults,"Error %d occurred during MICR
processing.",nStat);

 MessageBox(hWnd, szResults, "MICR Read Error",
 MB_OK|MB_ICONEXCLAMATION);
}

ampReadMicrPage

int ampReadMicrPage(pW, pInfo, x,y,dx,dy)

PWORKIMAGE pW;
ampMICRINFO *pInfo;
int *x ;
int *y ;
int * dx ;
int * dy ;

This API is called to locate MICR shapes on a full page image, report
the location and convert those shapes to corresponding ASCII codes,
and then place those codes in the output data structure. If the resulting
dy is zero, no MICR codeline was found. Note: only operates with a
Code value for US version of E13B. Functionally it is the same as

 AMPLIB-Software Developer’s Toolkit MICR Functions 61

ampReadMicr (see above) except for the output of the location
information.

Minimun Licenses Required: amplib, E13B, Image Repair

This function is used to locate a check by its MICR line on a full page
remittance document. It can also be used to find multiple strips on
checks returned with strips attached. In the lattes case the user would
make repeated calls with each subsequent call using the previous result
to offset the image location to search.

ampLoadImage(pWMyimage, fname, opts,
 ctype,imgnum);
ampCreateImageAlias (pWMyimage, &pWAlias);

nStat = ampReadMicrPage (pWAlias, &MI,
&x,&y,&dx,&dy);

ampGetImageMetrics(pWAlias, &DXorg, &DYorg,
 &Xorg, &Yorg, NULL, NULL);

if (dy > 0)// read again to see if more

ampSetImageMetrics(pWAlias, DXorg,
DYorg - y -dy ,

 Xorg , Yorg + y + dy);

nStat = ampReadMicrPage (pWAlias,
&MI, &x,&y,&dx,&dy);

ampReadMicrDouble

int ampReadMicrDouble(pW,
pInfoA,xA,yA,dxA,dyA, pInfoB,
xB,yB,dxB,dyB)

PWORKIMAGE pW;
ampMICRINFO *pInfoA;
int *xA ;
int *yA ;
int * dxA ;
int * dyA ;
ampMICRINFO *pInfoB;
int *xB ;
int *yB ;
int * dxB ;
int * dyB ;

This API is called to read two MICR lines from a check image, report
the locations and convert the code lines to corresponding ASCII codes,
and then place those codes in the output data structure. If the resulting
dy is zero, no MICR codeline was found. Note: only operates with a
Code value for US version of E13B. Functionally it is similar to

62 MICR Functions AMPLIB- Software Developer’s Toolkit

ampReadMicr (see above) except for the output of the location
information.

Minimun Licenses Required: amplib, E13B, Image Repair

This function is used to locate two MICR line. The second code line
may be caused by a correction strip or be the check image in an IRD. In
the case where the first (bottom) code line has an EPC code of 4, the top
code line is assumed to be the check image in an IRD. Special
processing is invoked to read the check image MICR line.

ampLoadImage(pWMyimage, fname, opts,
 ctype,imgnum);
ampCreateImageAlias (pWMyimage, &pWAlias);

nStat = ampReadMicrDouble (pWAlias,
&MIA, &xA,&yA,&dxA,&dyA,
&MIB, &xB,&yB,&dxB,&dyB);

ampReadMicrRepair

int ampReadMicrRepair(pWs, pWd, pInfo)

PWORKIMAGE pWs;
PWORKIMAGE pWd;
ampMICRINFO *pInfo;

This API performs exactly as the ampReadMicr but will create an
output image if image processing was necessary to read the MICR line.
In this case, the same image processing is performed on the full source
image and the result is output in the destination image pWd. The
destination will be a modified source image if Dorepair was set upon
input and DoneRepair was set upon exit. The image will be rotated 180
if Done180 is set upon exit. The API will create the pWd image unless
the result of the read is an error. The caller must manage the resulting
image.

If the Resolution parameter is zero, meaning that it is requesting a
resolution estimate, it will return the estimate in the Resolution
parameter.

The modifications to the resulting image may not improve the result but
in general the modifications will improve the result. Input images under
200 dpi are the least likely to be improved by the repair process. In
these cases the AmpLib engine performs additional steps which may be
inappropriate for the resulting image and hence are not included in the
repair image process.

 AMPLIB-Software Developer’s Toolkit MICR Functions 63

ampReadMicrCamera

int ampReadMicrCamera(pwFront, pMICRINFO *)

PWORKIMAGE pwFront;
ampMICRINFO *pMICRINFO

This function takes as input color, grayscale or binary images captured
by mobile devices, page scanners, cameras or traditional check
scanners. It will process these images and return:

 The MICR codeline extracted from the image
The ampReadCamera functions are composed of a series of calls to
ampReadMicr, amprMicrPrep, ampFilterImage and
ampDynamicThreshold. It is assumed that calls to ampReadCamera are
used because the source image does not have the same quality as
traditional check scanners. It will perform multiple steps, as needed,
depending on results of the early steps. Some of the parameters used
internally are different than when the image is assumed to be from a
check scanner. For example, the Minimun Confidence value for
ampReadMicr is higher than the standard default. This may result in
multiple steps in order to get a higher quality image by use of different
settings for filters and threshold. The result is higher read rates and
lower substitution rates.

64 MICR Functions AMPLIB- Software Developer’s Toolkit

ampReadCamera

int ampReadCamera(pwFront, pwRear,
szInputOptions, szMicrOutput,
pwFrontTIFF, pwRearTIFF,
pCameraResult*, pMICRINFO *)

PWORKIMAGE pwFront;
PWORKIMAGE pwRear;
PSTR szInputOptions;
PSTR szMicrOutput;
PWORKIMAGE pwFrontTIFF;
PWORKIMAGE pwRearTIFF;
ampCameraRes *pCameraResult;
ampMICRINFO *pMICRINFO

This function takes as input color or grayscale images captured by
mobile devices, page scanners, cameras, and check scanners. It will
process these images and return:

 The MICR codeline extracted from the front image
 A front and rear Black and White TIFF image compliant to

image exchange regulatory requirements.
Note: this function operates on gray or color images. If the user wishes
to use this process with a black and white image, it must first be loaded
into a GrayWorkImage before the call to ampReadCamera.
The ampReadCamera function is composed of a series of calls to
ampReadMicr, amprMicrPrep, ampFilterImage and
ampDynamicThreshold. It is assumed that calls to ampReadCamera are
used because the source image does not have the same quality as
traditional check scanners. It will perform multiple steps, as needed,
depending on results of the early steps. Some of the parameters used
internally are different than when the image is from a check scanner.
For example, the Minimun Confidence value for ampReadMicr is
higher than the standard default. This may result in multiple steps in
order to get a higher quality image by use of different settings for filters
and threshold. The result will be higher read rates and lower substitution
rates. In addition to reading the MICR line, fully qualified black and
white images for the front and back are produced as needed for image
exchange. If the goal is simply to read the MICR, the
ampReadMicrCamera function will perform all of the same MICR read
steps but it will not produce qualified images. The
ampReadMicrCamera also uses the traditional parameter blocks of all
ampReadMicr function calls.

ampReadCamera will even process multipart remittance payment
documents (E.g 8.5X11 page with check top or bottom. In this case the
MICR line will be found and read and the image of the check will be
located and cropped from the page image.
Use ampReadCamera with ampReadCameraRear to create a two step
process that will first process the front image and then later the rear
image. ampReadCamera will extract the MICR and generate the front
TIFF image. ampReadCameraRear will then generate the rear TIFF
image as a second step.

 AMPLIB-Software Developer’s Toolkit MICR Functions 65

The input images are provided in work images <pwFront> and
<pwRear>. The output images are placed in <pwFrontTIFF> and
<pwRearTIFF>. The <pwFrontTIFF> and <pwRearTIFF> can be
NULL and no output images will be generated. The <pwRear>
parameter can be NULL and no rear image processing will occur.
<szInputOptions> is a string containing the processing options as
follows:

 “C” instructs the function to crop the check images from the
captured image

 “T” instructs the function to test and correct for trapezoidal
shape errors in the check images

 “M=nn” Sets the MICR OCR character confidence level to
“nn”. “nn” is a value set from 01-99. Characters with a read
confidence level below this value will be output as a reject
symbol (“*”). The recommended value is “81”.

 “N=n” Set the detection logic to assume an iNternational
format. For example, N=4 is for India.

 “R” instructs the function to rotate 180 and reread the check if
a MICR codeline is not found on the first attempt. In addition,
the image will be rotated 90 degrees based on the image
dimensions. If the height is greater than the width, it will be
rotated 90 degrees. The actual direction will be based on the
little "l"(left) or little "r"(right).

 “B” instructs the function to leave blanks in data.
 “Q=#” Sets the Resolution detection method.

o "#=0" detects the resolution
o "#=nnn" uses resolution value of nnn.
o "#=-n" uses resolution value in image header

 “I” instructs the function to apply image repair filters to output
images if used during recognition

 "A" Image prep/cropping has been using a general edge
detection process. The A or Alternate cropping method uses a
Sobel filter to detect edges. For full page scanners, the
traditional method is superior. For camera based images, the
Alternate or Sobel edge is superior. For those rare cases where
the images are mixed, see the U or United option.

 "U" United will use the traditional image prep function first
and then follow up, if needed, with the "A" alternate or Sobel
prep. This is advised for mixed images

 "P=#" will Preprocess andimage to lighten the contents based
on the # value relation to average darkness. Internally the
darkest images are low numbers and the lightest are high
numbers. Since all images are processed as gray scale, the
range of values is from 0 to 255. The preprocess is used in the
Crop or Prep process. When the "P" is used alone, the default
value of 192 is used and will cause darkening.

 "E=#" will Enhance an image to lighten the contents based on
the # value relation to average darkness. Internally the darkest
images are low numbers and the lightest are high numbers.
Since all images are processed as gray scale, the range of
values is from 0 to 255. The Enhance process is used after the
Crop or Prep process and before MICR OCR. When the "E" is
used alone, the default value of 40 is used and will cause
lightening.

If the "A" value is used and no other parameter is included, it will have
the following defaults.
 "C";"P=40","E=192","O=80","l"

66 MICR Functions AMPLIB- Software Developer’s Toolkit

The parameters "CAR" are actually the recommended settings for
camera based input.

Use the “C” option if the input image has not been previously cropped
and corrected. Use the “T” option for camera images or if the source is
unknown. The “T” option is not required for page scanner images.

With a successful result the function will return the MICR codeline in
<szMicrOutput> that was extracted from the front image.
<pwFrontTIFF> and <pwRearTIFF> will contain the processed images.
These will be cropped, corrected, scaled, and converted to Black and
White TIFF compliant images. The <pCameraResult> structure will
contain flags to indicate success of the operations:

The CameraResult flags are:

int MICROK Indicates the MICR was read
successfully

int MICRCONF 0-100 level indicating confidence of
reading MICR line. Over 50 indicates
a successful read of the MICR line
routing number.

int IMAGESOK Indicates the success of generating
compliant TIFF images

int IMG2DARK Indicates one or both of the images are
too dark

int IMG2LIGHT Indicates one or both of the images are
too light

int IMGNOTSIZE Indicates one or both of the images are
the wrong size

int REARMISSING No output image available. Indicates a
rear image was not received or failed
to process.

int FRONTMISSING No output image available. Indicates a
front image failed to process.

int ORIGINX For remittance vouchers and checks
captured on check scanners this will
contain the upper left corner of the
located check on the original front
image.

int ORIGINY Upper left Y coordinate of the located
check

int CHECKWIDTH Width of the located check
int CHECKHEIGHT Height of the located check

This API always returns 0 if the function was successful, non-zero
otherwise.

ampReadCameraRear

int ampReadCameraRear(pwFrontTIFF, pwRearGray,
szInputOptions, pwRearTIFF,
pCameraResult*)

PWORKIMAGE pwFrontTIFF;
PWORKIMAGE pwRearGray;
PSTR szInputOptions;

 AMPLIB-Software Developer’s Toolkit MICR Functions 67

PWORKIMAGE pwRearTIFF;
ampCameraRes *pCameraResult;

This function is called after ampReadCamea to process the rear image
as a second step process. Use ampReadCamera to capture the MICR
line and generate the front TIFF image. The ampReadCameraRear
function then takes as input the front TIFF image and rear grayscale or
color image. Will threshold and scale the rear image to match the fornt
image and perform IQA on both images.
The front TIFF input image is provided in work image <pwFrontTIFF>.
The rear grayscale/color input image is provided in work image
<pwFrontGray. The output rear TIFF image is placed in
<pwRearTIFF>.
<szInputOptions> is a string containing the processing options as
described in ampReadCamera. You can and should pass the same option
string as used in ampReadCamera.

The <pCameraResult> structure will contain flags to indicate success of
the operations. Pass the same <pCameraResult> structure that was
composed by ampReadCamera to combine the flags produced by the two
steps.

This API always returns 0 if the function was successful, non-zero
otherwise.

68 MICR Functions AMPLIB- Software Developer’s Toolkit

ampReadScannerForChecks

int ampReadScannerForChecks(pwFront, pwRear,
szInputOptions, szMicrOutput,
pwFrontTIFF, pwRearTIFF,
pCameraResult*, pMICRINFO *)

PWORKIMAGE pwFront;
PWORKIMAGE pwRear;
PSTR szInputOptions;
PSTR szMicrOutput;
PWORKIMAGE pwFrontTIFF;
PWORKIMAGE pwRearTIFF;
ampCameraRes *pCameraResult;
ampMICRINFO *pMICRINFO

This function takes as input black and white, color or grayscale images
captured by page and check scanners. It will process these images and
return:

 The MICR codeline extracted from the front image
 A front and rear Black and White TIFF image compliant to

image exchange regulatory requirements.
The ampReadScannerForChecks function is composed of a series of
calls to ampReadMicr, amprMicrPrep, ampFilterImage and
ampDynamicThreshold. It will perform multiple steps, as needed,
depending on results of the early steps. Some of the parameters used
internally are different than when the image is from a check scanner.
For example, the Minimun Confidence value for ampReadMicr is
higher than the standard default. This may result in multiple steps in
order to get a higher quality image by use of different settings for filters
and threshold. The result will be higher read rates and lower substitution
rates. In addition to reading the MICR line, fully qualified black and
white images for the front and back are produced as needed for image
exchange. If the goal is simply to read the MICR, the
ampReadMicrScannerForChecks function will perform all of the same
MICR read steps but it will not produce qualified images. The
ampReadMicrScannerForChecks also uses the traditional parameter
blocks of all ampReadMicr function calls.

ampReadScannerForChecks will also process multipart remittance
payment documents (E.g 8.5X11 page with check top or bottom. In this
case the MICR line will be found and read and the image of the check
will be located and cropped from the page image.
Use ampReadScannerForChecks with ampReadCameraRear to create a
two step process that will first process the front image and then later the
rear image. ampReadCamera will extract the MICR and generate the
front TIFF image. ampReadCameraRear will then generate the rear
TIFF image as a second step.
The input images are provided in work images <pwFront> and
<pwRear>. The output images are placed in <pwFrontTIFF> and
<pwRearTIFF>. The <pwFrontTIFF> and <pwRearTIFF> can be
NULL and no output images will be generated. The <pwRear>
parameter can be NULL and no rear image processing will occur.

 AMPLIB-Software Developer’s Toolkit MICR Functions 69

When there is no rear image input and there is a rear image output, a blank
image of the same size as the front output image will be created.

<szInputOptions> is a string containing the processing options as
follows:

 “C” instructs the function to crop the check images from the
captured image

 “M=nn” Sets the MICR OCR character confidence level to
“nn”. “nn” is a value set from 01-99. Characters with a read
confidence level below this value will be output as a reject
symbol (“*”). The recommended value is “85”.

 “R” instructs the function to rotate 180 and reread the check if
a MICR codeline is not found on the first attempt.

 “B” instructs the function to leave blanks in data.
 “Q=#” Sets the Resolution detection method.

o "#=0" detects the resolution
o "#=nnn" uses resolution value of nnn.
o "#=-n" uses resolution value in image header

 “I” instructs the function to apply image repair filters to output
images if used during recognition

Use the “C” option if the input image has not been previously cropped
and corrected.

With a successful result the function will return the MICR codeline in
<szMicrOutput> that was extracted from the front image.
<pwFrontTIFF> and <pwRearTIFF> will contain the processed images.
These will be cropped, corrected, scaled, and converted to Black and
White TIFF compliant images. The <pCameraResult> structure will
contain flags to indicate success of the operations:

The CameraResult flags are:

int MICROK Indicates the MICR was read
successfully

int MICRCONF 0-100 level indicating confidence of
reading MICR line. Over 50 indicates
a successful read of the MICR line
routing number.

int IMAGESOK Indicates the success of generating
compliant TIFF images

int IMG2DARK Indicates one or both of the images are
too dark

int IMG2LIGHT Indicates one or both of the images are
too light

int IMGNOTSIZE Indicates one or both of the images are
the wrong size

int REARMISSING No output image available. Indicates a
rear image was not received or failed
to process.

int FRONTMISSING No output image available. Indicates a
front image failed to process.

int ORIGINX For remittance vouchers and checks
captured on check scanners this will
contain the upper left corner of the
located check on the original front
image.

70 MICR Functions AMPLIB- Software Developer’s Toolkit

int ORIGINY Upper left Y coordinate of the located
check

int CHECKWIDTH Width of the located check
int CHECKHEIGHT Height of the located check

This API always returns 0 if the function was successful, non-zero
otherwise.

ampReadMicrScannerForChecks

int ampReadMicrCamera(pwFront, pMICRINFO *)

PWORKIMAGE pwFront;
ampMICRINFO *pMICRINFO

This function takes as input color, grayscale or binary images captured
by mobile devices, page scanners, cameras or traditional check
scanners. It will process these images and return:

 The MICR codeline extracted from the image
The ampReadCamera functions are composed of a series of calls to
ampReadMicr, amprMicrPrep, ampFilterImage and
ampDynamicThreshold. It is assumed that calls to ampReadCamera are
used because the source image does not have the same quality as
traditional check scanners. It will perform multiple steps, as needed,
depending on results of the early steps. Some of the parameters used
internally are different than when the image is assumed to be from a
check scanner. For example, the Minimun Confidence value for
ampReadMicr is higher than the standard default. This may result in
multiple steps in order to get a higher quality image by use of different
settings for filters and threshold. The result is higher read rates and
lower substitution rates.

 AMPLIB-Software Developer’s Toolkit MICR Functions 71

ampVoteIRDRepair

int ampVoteIRDRepair(pWs, pWd, pInfo, phInfo,
prInfo)

PWORKIMAGE pWs;
PWORKIMAGE pWd;
ampMICRINFO *pInfo;
ampMICRINFO *phInfo;
ampMICRINFO *prInfo;

This API will read a MICR line from the source image and compare it
with the data provided in phInfor. The "h" implies the results of a
hardware reader. The vote or correctly the results of the vote are placed
in prInfo. As with ampMicrRepair, the pWd image will be modified
based on the filtering needed to improve the accuracy of the read. The
software read results will appear in pInfo as they do in ampReadMicr.
ampVoteIRDRepair does a different style of voting on the EPC and
Amount fields in the MICR line than ampVoteMicrRepair.
ampVoteMicrRepair requires an exact match in both the EPC and
Amount fields in order for the voted upon results to indicate an overall
match. ampVoteIRDRepair is not as strict and allows a match to occur
even if the EPC field in the check image to be completely missing.
Similarly, a match may be declared if the Amount field is missing from
the check image but is present in the hardware data. In addition,
ampVoteIRD repair does not try to exactly match dash characters, but
will skip over dashes looking for correspondence on the more
significant characters in a given field.
The settings for the software result in pInfo are assumed to be the same
as the data input in phInfo. For example, if a custom translation table is
used to output the software result, the same table must be used to
describe the input of the hardware data. The result data in prInfo will
always have blanks removed.
The data returned in prInfo->percent contains information on how the
vote results were obtained for each character as opposed to a confidence
percentage. The data represents the following:
 0--indeterminate
 1--hardware and software were the same, hardware selected
 2--hardware and software best are same, hardware selected
 3--hardware and software did NOT match, software selected
 4--hardware and software best do NOT match, hardware selected
 5--hardware misreads and software reads, software selected
 6--hardware misread and no software selection, misread selected

The IRD voting process changes all percent 2 values to 1 values.
Consequently, if there is a match, prInfo->percent will have all 1s.

72 MICR Functions AMPLIB- Software Developer’s Toolkit

ampVoteIRDRetry

int ampVoteIRDRetry(pWs, pWd, pInfo, phInfo,
prInfo)

PWORKIMAGE pWs;
PWORKIMAGE pWd;
ampMICRINFO *pInfo;
ampMICRINFO *phInfo;
ampMICRINFO *prInfo;

This API has the same parameters as ampVoteIRDRepair and in fact
performs many different ampVoteIRDRepair operations looking for a
good match between the hardware data located in phInfor and the MICR
line as read from the source image pWs. Both of AMPLIB's recognition
engines are used in the voting process as well as the speckle, line, and
border image filters. Many different combinations of the recognition
engines and filters are used on the image before the API terminates.
ampVoteIRDRetry will return as soon as it has found a match. Usually,
this happens very rapidly, but the process may take a significant amount
of time if no match is possible because the MICR line image is degraded
or perhaps the hardware input was wrong,

 AMPLIB-Software Developer’s Toolkit MICR Functions 73

ampVoteMicrRepair

int ampVoteMicrRepair(pWs, pWd, pInfo,
phInfo, prInfo)

PWORKIMAGE pWs;
PWORKIMAGE pWd;
ampMICRINFO *pInfo;
ampMICRINFO *phInfo;
ampMICRINFO *prInfo;

This API will read a MICR line from the source image and compare it
with the data provided in phInfor. The "h" implies the results of a
hardware reader. The vote or correctly the results of the vote are placed
in prInfo. As with ampMicrRepair, the pWd image will be modified
based on the filtering needed to improve the accuracy of the read. The
software read results will appear in pInfo as they do in ampReadMicr.
The settings for the software result in pInfo are assumed to be the same
as the data input in phInfo. For example, if a custom translation table is
used to output the software result, the same table must be used to
describe the input of the hardware data. The result data in prInfo will
always have blanks removed.
The data returned in prInfo->percent contains information on how the
vote results were obtained for each character as opposed to a confidence
percentage. The data represents the following:
 0--indeterminate
 1--hardware and software were the same, hardware selected
 2--hardware and software best are same, hardware selected
 3--hardware and software did NOT match, software selected
 4--hardware and software best do NOT match, hardware selected
 5--hardware misreads and software reads, software selected
 6--hardware misread and no software selection, misread selected

If the user wishes to improve the read rate, data result 5 will be the most
important. If the user wishes to reduce substitution errors in the
hardware results, then the user should raise the value of Minimum
Confidence and pay special attention to data result 4.

ampVoteMicrRetry

int ampVoteMicrRetry(pWs, pWd, pInfo, phInfo,
prInfo)

PWORKIMAGE pWs;
PWORKIMAGE pWd;
ampMICRINFO *pInfo;
ampMICRINFO *phInfo;
ampMICRINFO *prInfo;

74 MICR Functions AMPLIB- Software Developer’s Toolkit

This API has the same parameters as ampVoteMicrRepair and in fact
performs many different ampVoteMicrRepair operations looking for a
good match between the hardware data located in phInfor and the MICR
line as read from the source image pWs. Both of AMPLIB's recognition
engines are used in the voting process as well as the speckle, line, and
border image filters. Many different combinations of the recognition
engines and filters are used on the image before the API terminates.
ampVoteMicrRetry will return as soon as it has found a match. Usually,
this happens very rapidly, but the process may take a significant amount
of time if no match is possible because the MICR line image is degraded
or perhaps the hardware input was in error.
The MICR retry voting process changes all percent 2 values to 1 values.
Consequently, if there is a match, prInfo->percent will have all 1s.

AMPLIB-Software Developer’s Toolkit Bar Code Reading Functions 75

Bar Code Reading Functions
This group of functions provides for reading of bar codes in a variety of
symbologies. You must have the appropriate license bit set in your
AmpLib license in order to use these functions.

Bar Code Creation Guidelines
Generally the people who create the software performing the barcode
read do not get to input suggestions on the print process. If you can
influence the printing process, here are some guidelines.

Print the bar codes big enough to be read.

The key parameter in bar code printing is the size of the "x-width"
after the bar code has been scanned. This means the user must
account for the printer resolution and the scanner resolution in
determining the best print size to use. The recommended minimum
x-width after scanning is 3 pixels. It is quite possible to have
successful reads with an occasional x_width of less than 3 pixels but
in general, more scanned pixels per symbol element is better.

Print the bar code with a fixed width.
Pad the data with leading zeros or blanks so that the length is
always the same. This speeds up the search process and reduces the
chances of unwanted objects being read as a bar code.

Use a checksum character if it is an option.

Most of the newer bar codes include a checksum in all cases. Older
codes such as Code 39 have it as an option. It is strongly
recommended that a check sum be used for all printing. This almost
absolutely assures that a substitution error in the data will not occur.

Observe the bar code white space limits.

Bar code need a clear space on either end called the "white space".
The amount of white space varies per symbology but a good rule is
to leave 1/4 inch clear all around the bar code.

Bar Code Reading Overview

The AmpLib bar code reading process consists of two basic operations:
searching for a bar code placed anywhere at any angle on a page and
then decoding the barcode found. This overview will associate the
parameters with the process and hopefully expedite the users
understanding.

76 Bar Code Reading Functions AMPLIB-Software Developer’s Toolkit

Factors That Effect Read Performance
On todays processors, a full page image will be searched and read in a
fraction of a second (less than a tenth of a second) with reasonably well
formed barcode images. However this speed can be affected negatively
based on numerous parameters.

Factors That Will Cause Images to Read Faster

Using the input image to specify a Region Of Interest(ROI)

When the location of a barcode is generally known, e.g. lower
right corner, setting the input image to that corner using the
ImageAlias function will make the speed 4 times faster since only
1/4 of the image must be processed.

Factors That Will Cause Images to Read Slower

As might be expected, many things will make the speed run
slower.
 Reading an unknown number of barcodes per page
 Reading multiple barcode types per single read
 Reading multiple sizes and at multiple orientations
 Reading low quality images with a low Quality setting
 Reading with noise filters set
 Reading with especially small bar height
 Reading with few characters in a bar.

When any or all of these choices are made, each may cause
another pass of the image adding fractions of a second. These
small delays added over thousands of images, can become
significant hindrances to throughput. Testing different parameters
on different images is a critical step to maximizing recognition
read rates for a production run.

Factors That Will Cause Confusing Results

When adding multiple image processing steps, the effect of the
timeout value will make some symbols fail that previously had
read. For example, some filters add an extra pass on the image in
order to fill-in gaps and holes Conversely, when using a Quality
level of 0 on some symbol types, the image will be processed
with increased resolution through interpolation. This increased
resolution will also take more time and may induce a timeout.

Barcode Size
The search for a possible barcode object or component is based on the
size of the barcodes being read. Generally this is not known in advance
and a common set of sizes is used as the default. In all but the rarest
cases the default size set will be sufficient to find a bar code object. The
parameters effecting search are the search order parameters of PrSmall,
PrMedium and PrLarge and the actual size parameters of Height and
Width. There is an additional implicit parameter, which is often the
cause of a misread. This is the image resolution value set in the input
file or image structure. Since the search is based on size in inches, the
resolution value must be reasonably accurate. The ForceResolution
parameter can be used when the image data does not contain accurate
resolution information. Finally, the output parameter
TestedBarComponents tells us if a barcode object has been found. A

AMPLIB-Software Developer’s Toolkit Bar Code Reading Functions 77

zero result means that the search for a barcode object failed and not the
read decode process itself. The most common initial error is the failure
to set up the barcode engine in a manner to assure that all possible
barcode objects are found on a page.

Decode Parameters
Once barcode objects are found, the parameters for the decoding
process must be set correctly. The most important parameter is the
SymbologyMask, which identifies which type of barcode should be
read. Many barcode symbologies can be "auto discriminated" i.e. there
is enough information in the symbology to determine the type of
barcode that they are. The symbologies can be auto discriminated are
Code 3 of 9, CODABAR, Interleaved 2 of 5, Code 128 and Code 93.
Additional parameters required in the decode process include
Orientation, DoChecksum, Fixed, Quality, Filter and Length. They will
be covered in the detail section of the parameters.

The decode parameters are often used beyond simple control of barcode
reading. They can be used to prevent unwanted reads of barcode like
objects. They can be used to discriminate between multiple barcodes on
a page and to recover from errors in the image itself. A description of
their usage in these functions is important but not obvious.

Unwanted Reads
There are cases where text characters in a particular font (e.g. Helvetica)
will match a valid barcode. This will happen most often when the
minimum character length of the barcode is small. The longer the
minimum length of a barcode, the less likely this type of error will
occur. The recommended Length parameter is 6 characters even if the
data requires fewer. If the barcode is always the same length, the Fixed
parameter will also help prevent inadvertent reading. Finally, if the
barcode printing can be controlled , always print a checksum and set the
DoChecksum parameter.

Multiple Barcodes per Page
The barcode read engine is designed to handle any number of barcodes
that will fit on a page. Sometimes, the user only wishes to find a specific
code. The proper combinations of Length and Fixed will often
accommodate this.

Poor Image Quality
The barcode engine does a good job of dealing with poor image

quality especially in the color/grayscale domain. Some problems can
only be fixed by user settings. The Filter parameter is designed to deal
with column drop out on fax machines and scanners. The Quality
parameter identifies low quality images, which will receive additional
passes to attempt to read the barcode. These additional passes will often
slow down the speed at which the barcodes are read. If the Quality
parameter is set to zero(0), the image itself will be scaled to a higher
"pseudo" resolution. This often improves read rates on poor quality
images but at the expense of speed (See "Factors That Will Cause
Confusing Results").

78 Bar Code Reading Functions AMPLIB-Software Developer’s Toolkit

The Partial parameter can be used when debugging a page with poor
image quality. It will report "partial" reads. In general it is not a good
idea to use this for production processing since the amount of data
generated can be large and the processing time long.

General Management Parameters
The user can control the maximum number of barcodes to be read on a
page and how much total data they will have using MaxBars and
MaxAscii parameters. These parameters must account for Partial
barcode read data as well. The Number parameter identifies the actual
number of barcodes to read per page. Setting this to the actual number
to read (if known) will potentially speed up the process.

Bar Code Parameters
The input parameters for bar code reading are contained in the structure
ampBARARGS as shown below. The interface definition file should be
used as final reference.
typedef struct of_ampbarargs {

 double Width; // (inches)
double Height; // (inches)
long SymbologyMask; // Symbologies

 long Orientation; //
 long Quality; // 0--9 (low--high)

long DoChecksum; // True/False
long Filter; // size of 0,1,2,3

 long PrLarge; // priority for Large size
 long PrMedium; // priority for Medium size
 long PrSmall; // priority for Small size
 long Number; // Number of symbols to find

 long Length; // Min char length
 long Fixed; // fixed length codes

 long Partial; // Min chars in a partial read
 long MaxBars ; // Number of data sets to report

long MaxAscii ; // Amount of character space
 long ForceResolution ;

 // (0 Use image resolution as is)
 // (>0 Use this value as resolution)
 // (<0 Estimate resolution)
 long StartTime ; // enter with 0, reports internal start time
 long MaxTime ; // max time to run in hundreds of sec

 } ampBARARGS;

Parameters

SymbologyMask
This parameter specifies which bar code symbologies will be
recognized. One or more symbology names may be specified with this
call. The SymbologyMask parameter is formed as a binary bit mask,
which selects one or more of the symbologies to recognize.
Note that some symbologies are subsets of others, and cannot be
positively identified in the bar code data record if the superset is also
selected. For example, if both EAN 13 and UPC 12 are selected, the
result will be EAN 13 regardless. While common barcodes will auto-
descriminate, many must be used alone without any other barcodes. In

AMPLIB-Software Developer’s Toolkit Bar Code Reading Functions 79

the following list, codes identiefed as "standalone" can not be used in
conjunction with other codes. In addition, the I25, A25 and 25 codes
can not be used together only one of the three can be used at once. In
the following table, they have a "25 limited" comment.

The allowable barcode symbologies are:

BC_3of9 Code 3 of 9
BC_CODABAR CODABAR
BC_I2of5 Interleaved 2 of 5 25 limited
BC_A2of5 Airline 2 of 5 25 limited
BC_128 Code 128
BC_UCC128 UCC Code 128
BC_2of5 Code 2 of 5 25 limited
BC_93 Code 93
BC_UPC_A UPC-A
BC_UPC_E UPC-E
BC_EAN_13 EAN-13
BC_EAN_8 EAN-8
BC_POSTNET Postnet Standalone
BC_PDF417 PDF-417 2D code Standalone
BC_PATCH Patch Code Standalone
BC-PLANET US Post Office code Standalone
BC_39_NOSS Code 3 of 9 without
 start/stop code Standalone
BC_BCC32 Bar Code 32 (Pharmacy) Standalone
BC_DMATRIX Data Matrix Standalone
BC_4STATE 4-State Standalone

 (US Intelligent Mail / One Code,
 UK Royal Post,
 Austrialian Post,
 Royal Dutch Post,
 Singapore Post)

BC_39_EXT Code 39 Extension Standalone
BC_QR Quick Response Code Standalone

Example:
To select Code 39 and Code 25 at the same time:

pBarArg->SymbologyMask = BC_3of9 | BC_2of5 ;

Width
The Width argument specifies the width, in inches, of the physical size
of the bar code. (Width is defined as the direction perpendicular to the
vertical bars of the bar code.) The value does not have to be exact, but a
close approximation can speed bar code reading. Only use this
argument when the actual size of the bar code is known and consistent.

80 Bar Code Reading Functions AMPLIB-Software Developer’s Toolkit

It can be used in conjunction with the Search Order Parameters to
provide a variety of sizes to search for.

Height
The Height argument specifies the height, in inches, of the physical size
of the bar code. The same rules apply to height as apply to width, above.

Orientation
Orientation specifies the general orientation for bar codes in the input
image. Note that horizontal orientation means that the vertical bars of
the bar code are perpendicular to the x-axis of the image. This is
sometimes called the "picket fence" orientation. Orientation is given as:

0 Horizontal only
1 Vertical only
2 Horizontal and vertical
3 Horizontal with significant skew
4 Vertical with significant skew
5 Vertical and horizontal with significant skew

Choosing only the actual orientation found on an image can reduce
execution times. The bar code reading function assumes a normal
amount of skew that would be expected from most auto-feeders.
"Normal" in this case can be as much as 10 to 15 degrees of skew. For
fastest throughput, try using the non-skewed orientation modes first to
determine the correct choice for your processing needs.

Quality
The Quality argument may be used to condition the bar code reading
process to assume different quality in the images. The quality value
ranges from 0 to 9, with 9 representing the best quality input images.
With lower values, the bar code reading function will "try harder" to
read the bar code; higher numbers will allow the reading process to give
up sooner. Generally, use low numbers for poor quality images, and
high numbers for high quality images. Some guidelines for quality
values:

FAX input 1
First generation print 9
2nd generation copy 7
Microfilm scan 4

The Quality parameter controls how much effort is expended by setting
a minimum confidence value for an "acceptable" read. Specifically the
confidence must be 10 times the value of the Quality parameter. For
example, if the Quality value is 4, then the confidence must be 40 or
above or else NO Read will be reported. The minimum Quality
parameter value used to be 1 but is now 0. Now very low confidence
values can still be reported as a read. These low confidence values will
likely have some miss-reads but it is up to the user to sort out the good
from the bad and adjust the Quality as needed. A problem is that
every engine has its own way of calculating the confidence
value used in Quality. In addition, some engines have more
internal redundancy than others. UPCA and EAN 13 have a
parity code embedded without being requested. This allows

AMPLIB-Software Developer’s Toolkit Bar Code Reading Functions 81

more confidence in these results. In the case of UPCA and
EAN 13, the confidence number number used in Quality is
related to the number of rasters with the same result.
However in this case, the rasters have an embedded parity
and hence they have a higher relative confidence.

Many systems will know what the general result of a barcode
should be. In those cases, very low Quality values can be used
to get results that would be suspect using only information
available to the bar code engine.

DoChecksum
Enables checksum verification of bar code data when such verification
is optional for the symbology. When this option is selected, the AIM
standard checksum algorithm is performed on the bar code data. If the
checksum does not match the expected value, the bar code in question
will not be reported as a successful read.

Filter
Selects a spot filter to be applied to the bar code before reading. A filter
value of F=0 selects no filtering, F=1 selects a 1x1 spot filter, F=2
selects a 2x1 spot filter.

Example:

Filter = 2;
enables a 2x1 spot filter.

Search Order Parameters
PrSmall
PrMedium
PrLarge

The search order parameters allow the user to control, which of the
predefined sizes should be searched, for first. With the current speed of
the CPU, the order of processing is less important. The parameters also
allow disabling searching for bar codes of a specific size. Finally when
working with a single, custom size bar code, disabling the search for the
3 standard sizes will improve performance.
Note that if a non-zero value is given for the Width and Height
arguments , that size of bar code will be searched for first, regardless of
the priorities given by these parameters.
The three size classes are defined as follows: (Sizes shown are nominal
and vary somewhat depending upon the symbology being searched for.)

Small refers to a 0.9 inch wide by 0.25-inch high bar code.
Medium refers to a 1.7 inch by 0.5-inch high bar code.
Large refers to a 4.0 inch by 0.9 inch high bar code.

82 Bar Code Reading Functions AMPLIB-Software Developer’s Toolkit

Each argument should be given a unique priority code, from 1 (highest)
to 3 (lowest), or 0 if that size class should not be searched for.
Example 1:

PrSmall = 1 ;
PrMedium = 2 ;
PrLarge = 3 ;

This example sets the search order to Small, Large, and Medium.

Example 2:
PrSmall = 0 ;
PrMedium = 2 ;
PrLarge = 1 ;

This example requests that the Small size not be searched for, and
searches for Large and Medium, in that order.

Number
The ampReadBarCodes function will search for at most Number bar
codes. The function will continue searching until Number bar codes
have been found, or until it cannot find any more. A bar code must be
valid (pass all required definitions and restrictions) before it will satisfy
this Number count. A Number value of zero will search for all possible
bar codes

Length
The Length defines the minimum number of characters that must be
read in a bar code for that bar code to be considered valid. If fewer than
this number of characters is found in a bar code, the bar code will not be
reported in the count of valid bar codes found. (See PartialLength
description below.)

Fixed
Fixed is a flag that indicates whether the bar codes may have a variable
length or not. If Fixed is set to 1, each bar code must have exactly
Length characters to be valid. If Fixed is set to 0, bar codes may be
variable length, but must still pass the minimum length requirement
given by Length. Be careful when specifying fixed length reads. When
checksum verification is enabled, the check digit(s) will not be counted
as part of the fixed length. Likewise, when no checksum is performed,
any check digits in the bar code data will be reported back as data; thus
the specified length must include them. Fixed length only applies to the
codes 39,128, I25 and Codabar.

Partial

The Partial value is used in special cases when you want to see partial
reads. If this argument is non-zero, it defines the minimum number of
characters that must be valid in order to report a partial read. Partial
reads are not counted as part of the Number of valid bar codes and do
not serve to satisfy the bar code search count. They are read into a
separate list, which can be accessed via a special argument setting in
ampGetBarCodeData. Bar codes read as partials do count against the
total MaxBars parameter.

MaxBars

AMPLIB-Software Developer’s Toolkit Bar Code Reading Functions 83

The MaxBars parameter defines the maximum space allocated in
AmpLib for bar code results on a single page. At a minimum, it must be
larger than Number. The recommended value is 100, which will report
up to 100 bar codes on a single page.

MaxAscii
The MaxAscii parameter defines the maximum space allocated in
AmpLib for the ASCII character data on a single page. At a minimum,
it must be larger than Number * Length. The recommended value is
100, which will report up to 100 characters total for all bar codes on a
single page. When using PDF 417 numbers as high as 20,000 are not
unreasonable.
ForceResolution

The input image will usually have the resolution of the data embedded
within it. In some instances, the image generation software fails to
include this information or it cannot include this information. The
ForceResolution parameter lets the user control the information. A
value of 0 uses the image resolution as is, a value of >0 will be the
"forced" resolution and a value <0 will have AmpLib estimate the
resolution.

MaxTime
Limit the time to process an image. Input of 0 for no limits. Limits are input in units of
hundreds of a second. A value of 50 is one half a second.

StartTime
This must always be a 0 upon input. Upon return, the output value is the start time using
the timeb structure value in hundreds of a second.

84 Bar Code Reading Functions AMPLIB-Software Developer’s Toolkit

ampGetBarCodeData

int ampGetBarCodeData(pBase, pPage, index,
partial, text, data)

ampBAROUT *pBase;
ampBARPAGEINFOR *pPage ;
int index;
BOOL partial;
LPSTR text;
BARCODEINFO *data;

This function returns the specific information for each bar code on a
page as read by ampReadBarCodes.
The data for all barcodes read is found in pBase which was set by the
ampReadBarCodes call.
Index is given as a number from 1 to n, where n must not exceed the
number of valid bar codes reported by ampReadBarCodes in the
BarsRead parameter of pPage.
If Partial is TRUE, the bar code data to be returned should be taken
from the list of partial reads as returned by ampReadBarCodes in the
PartialsRead parameter of pPage. Normally you will set this argument
to FALSE, to retrieve only the valid bar codes read. In some special
cases, you may want to turn on partial reads, in which case you select
those data records instead of the valid bar code records by setting this
TRUE.
Text is a pointer to a character array that will be filled with the text of
the bar code. The Text data space must be large enough to accommodate
the largest bar code data set. If checksum verification has been enabled,
the check digit will have been stripped from this text string. If checksum
verification has not been enabled, this text may include checksum
digits, which might need to be removed before an application uses the
data. The Text data may contain any binary character depending upon
what is in the barcode itself.
Data is a pointer to a BARCODEINFO block that will be filled with
related information on the bar code that was read.

Return Values
The function returns a 0 if there are no errors in the call and it fills a
BARCODEINFO block with information describing the bar code found.
The actual bar code character information will be returned via binary
character array Text. This is NOT a standard null-terminated string. The
user must allocate a buffer large enough to hold the expected string
data. The fields of BARCODEINFO are defined as follows (see
interface reference file for latest definition).

typedef struct of_barcodeinfo {

int TextLen; // length of text
 DWORD Symbology; // code symbology

 BOOL Reversed; // TRUE if reversed
BOOL Rotated; // TRUE if rotated

 int ConfValue; // 0 to 100 %
 int Check1; // check digit

 int Check2; // check digit
 int dx; // width of bar
 int dy; // height of bar
 int x; // x origin of bar

 int y; // y origin of bar

AMPLIB-Software Developer’s Toolkit Bar Code Reading Functions 85

 } BARCODEINFO;

TextLen is the length of the character data for this bar code and does not
include a terminal NULL character.
Symbology identifies the symbology of this bar code. It is given as a
value identical to that defined in the BarCodeTypes .
Reversed gives the direction of reading used to read this code. 0
indicates forward reading, 1 indicates reverse reading. This value
indicates an upside-down bar code (180-degree rotation).
Rotated indicates a 90 degree rotation from horizontal. The so-called
ladder presentation.
ConfValue gives the confidence level of the read. This is a simple
percentage (0 to 100) of the region containing the bar code which was
used to recognize the code. Higher values indicate greater confidence,
but many codes read successfully with low values.
Check1 gives the numeric checksum.
Check2 gives the numeric checksum (Some symbologies have two
checksums).
dx, dy, x, y give the sub-image metrics of the region enclosing the bar
code in the input image. This data can be used to identify the meaning
of the bar code when multiple codes on a page are expected.
Example:

results = GetBarCodeData(pBase, pPage,1, 0,
 lpText, &data);

86 Bar Code Reading Functions AMPLIB-Software Developer’s Toolkit

ampReadBarCodes

int ampReadBarCodes(pW, pArg, pOut, pAscii,
pPage)

PWORKIMAGE pW ;
PampBARARGS pArg;
ampBAROUT *pOut ;
char *pAscii ;
PampBARPAGEINFO pPage;

This function will read bar codes from the image pW. The active sub-
image of pW will be examined for bar codes as defined by the pArg
parameters. Processing will be more efficient if the sub-image zones in
on the bar codes, but you do not have to be precise. Keep in mind that
many types of image data can look like bar codes during initial passes
over the data, so the less extraneous data that must be examined, the
faster the function will run.
Bar code data that is read from the image will be stored in the pOut and
pAscii structures. Since this will contain the data for all bar codes on a
page, subsequent calls to ampGetBarCodeData will extract the data
one bar code at a time. The general information regarding the result
data will be in pPage.

Return Values
If the function call is not in error, the function loads the ampBAROUT
and CHAR with the data for all the barcodes on a page. The
ampBARPAGEINFO contains values giving the results of the bar code
read (See interface files for latest definition).

typedef struct of_ampbarpageinfo {

 long BarsRead ; // Number of valid bar codes
 long PartialsRead ; // Number of partial reads

long TestedBarComponents ; // could be bar codes
 } ampBARPAGEINFO;

BarsRead returns the number of valid bar codes read.
PartialsRead returns the number of partial bar codes read.
TestedBarComponents returns the number of objects on a page which
were examined to see if they were a bar code.

You can read the specific bar code information for each bar code found
using the ampGetBarCodeData function.
Example:

char text[40];
char allspace [200] ;
BARCODEINFO data;
ampBARARGS Arg;
ampBARARGS *pArg = &Arg ;
ampBAROUT Out[100] ;
ampBAROUT *pOut = &Out ;
ampBARPAGEINFO Page ;

AMPLIB-Software Developer’s Toolkit Bar Code Reading Functions 87

ampBARPAGEINFO *pPage = &Page ;

pArg->SymbologyMask = BC_3of9 ;
pArg->Number = 3 ;
pArg->Fixed = 1 ;
pArg->Length = 8 ;
pArg->MaxAscii = 200 ;
pArg->MaxBars = 100 ;
pArg->Partial = 0 ;
pArg->Height = pArg->Width = 0.0 ;
pArg->Quality = 0 ;
pArg->Orientation = 0 ; // Horizontal
pArg->PrSmall = 1 ;
pArg->PrMedium = 2 ;
pArg->PrLarge = 3 ;
pArg->Filter = 0 ;
pArg->DoChecksum = 0 ;
pArg->ForceResolution = 0 ;
pArg->StartTime = 0 ;
pArg->MaxTime = 0 ;

// Read Page
rc = ampReadBarCodes(pW, pArg,
pOut,allspace, pPage);

if (rc == 0)
 for (i=1; i <= pPage->BarsRead; i++)
{ // Fetch data for each bar code

rc = ampGetBarCodeData(pOut, pPage, i,
 FALSE, text, &data);

// do something with data
}

The example reads up to 3 Code 39 bar codes from pW image, each
bar code must be exactly 8 characters long, and no partials are allowed..
After the page is processed, the data for each bar code is fetched.

OCR Functions
This group of functions provides for reading the OCR shapes from an image and
placing the resulting ASCII codes into an appropriate data structure.

88 Bar Code Reading Functions AMPLIB-Software Developer’s Toolkit

OCR Parameters
The parameters are contained in the structure ampOCRINFO as shown below.

typedef struct of_ampOCRINFO {

 int lastchar;
 char resultchar[256];
 char bestchar[256];
 int percent[256];
 char translater[256]
 int Singleline;
 int PassCount
 int Dorepair;
 int Do180;
 int DoneRepair ;
 int Done180 ;
 int Filter ;
 int Resolution

 int Code ;
 int NoBlanks ;
 int UseTranslator ;
 int NoRules ;
 int Rules ;
 int MinCon ;
 int char_x[256];

int char_y[256];
int char_dx[256];
int char_dy[256];

 char route[20];
 char account[20];
 char check[20];
 char amount[20];
 char epc[20];
 long MaxTime ;
 long StartTime;

long Roi ;
 long RoiTopOffset ;
 long RoiLeftOffset ;
 Long RoiX ;
 Long RoiY ;

 Long RoiDX ;
 Long RoiDY ;

 } ampOCRINFO;

lastchar
The number of characters in the result array. It can also be considered a pointer to the new
line character at the end of a sting.

resultchar
The resulting character string from the read. The valid length is determined by lastchar.
The resulting character array will include "misread" characters as determined by the user
supplied controls on minimum confidence and rules.

bestchar
The best character string from the read. This are the best characters found even though
they may not pass the tests needed to be a resultchar.

percent
The array containing the confidence percentage associated with the best characters found.

translator
This table translates the internal codes to those desired by the user. For example, the
default translation table uses an '*' for a character misread. By loading this table (and
setting the UseTranslator parameter) the user will have their own character presentation.

AMPLIB-Software Developer’s Toolkit Bar Code Reading Functions 89

The codes E13B and CMC7 use the lower 31 locations for their codes. OCR A and B use
the traditional ASCII code locations.
The table contents will also vary depending on the code being translated, i.e. E13B will
have fewer characters than CMC7.

Translation Table

Location Meaning MICR Default
0 '0' '0' '0'
1 '1' '1' '1'
2 '2' '2' '2'
3 '3' '3' '3'
4 '4' '4' '4'
5 '5' '5' '5'
6 '6' '6' '6'
7 '7' '7' '7'
8 '8' '8' '8'
9 '9' '9' '9'
10 Routing 'A'
11 Amount 'B'
12 On Us 'C'
13 Dash 'D'
14 Blank ' ' ' '
15 Misread NA '*'
16 Best is same as Selected NA 'N'

Singleline
When Singleline is set to 1, only a single line of the image is processed. When set to 0, all
of the lines in the input image are processed. The recommended setting is zero(0) when the
caller externally zones the image to a single line.

PassCount
The PassCount value determines how many attempts should be made to OCR an image.
The results of which are voted upon and then returned. Zero(0) is the same as one. and //
0- single pass/ n= number of passes to attempt

Dorepair
When this parameter is set and if any read errors are detected in the result data, then a
temporary copy of the input image is repaired based on the results of the first read. The
repaired image is then used for a second MICR read. The two MICR read results are then
voted upon and the result of the vote is reported. When doing image repair and reprocess,
the execution times will be about twice as long for images which have read errors in the
first pass.

Do180
If a MICR line cannot be detected on the bottom of the input image, then a temporary
copy will be created and rotated 180 degrees before attempting to perform another MICR
read. The read of the original line will be considered unsuccessful if it has less than 4
valid characters and any unreadable characters.

90 Bar Code Reading Functions AMPLIB-Software Developer’s Toolkit

DoneRepair
This is an output parameter that indicates if image repair was performed to get the result.

Done180
This is an output parameter that indicates that the image was turned 180 to get the result.
The result reflects what was found at the top of the input image.

Filter
This is an output parameter that reports the type of image and implies the filter that was
used to repair the image when the DoneRepair parameter is set. The results are
AmpNeutral, AmpLight and AmpDark. A Neutral image is repaired with a noise removal
filter. A Light image is repaired with a morphological darkening filter. A Dark image is
repaired with a morphological lightening filter.

Resolution
The Resolution parameter must be a good approximation to its actual image resolution.
When reading MICR, the OCR engine is really a "check reader". The resolution
information is needed to determine where the bottom approximately 5/8" of a check is
located. Forcing resolution with this parameter is normally not an issue since the image
file will generally contain this information. In some situations the resolution is not
included in the file data and in those cases a non-zero value for the Resolution parameter
will be used. NOTE: The input image (pW) will have the resolution set if the input value
is >= 0.
Input values:
 < 0 : Use image resolution

==0 : Try to estimate image resolution based on
image size

 > 0 : Use this parameter for resolution.

Code
The type of MICR code being read. The default value of 0 is E13B.

E13B 1
CMC7 2
OCRA-Numeric 4
OCRA-Numeric+Special 8
OCRA-AlphaNumeric 12
OCRA-AlphaNumeric+Special 16
OCRA-EuroBanking 20
OCRB-Numeric 32
OCRB-Numeric+Special 64
OCRB-AlphaNumeric 96
OCRB-AlphaNumeric+Special 128
OCRB-EuroBanking 160

NoBlanks

AMPLIB-Software Developer’s Toolkit Bar Code Reading Functions 91

An input parameter set to a 1 when the output will have blanks removed.

UseTranslator
An input parameter set to a 1 when the translator table is to be used.

NoRules
An input parameter set to a 1 when the internal banking rules are to be ignored. This is
normally used when the input image is only a portion of a MICR line.

Rules
The national banking association rules to apply. Currently this is only the ABA rule set
from the US.

MinCon
An input parameter describing the Minimum Confidence value that should be used to
accept or reject a character. The value range is between 0 and 99 but the only reasonable
values are between 80 and 90. Setting the value too high will reject characters that are
read correctly. Setting the value too low will cause the acceptance of characters which are
misreads or substitution errors.
The user must decide the best parameter value based on testing with their data set and
with their set of needs. In general, good images do not cause substitution errors. It is
corrupted images that cause problems. In all cases, a substitution error rate over a large
data set is still expected to be a fraction of one percent. The following information is
based on testing a wide range of images with the toolkit.
A MinCon of 80 is recommended for doing verification. It will generate some substitution
errors on corrupted images but since it is being compared to another result, this effect is
minimized.
A MinCon of 85 is recommended for general usage. This will reduce the substitution rate
and only nominally reduce the read rate.
A MinCon of 89 is recommend for the lowest substitution error rate without dramatically
reducing the read rate.

char_x
The x pixel location (from left edge of image) for each result character. This is often used
in voting between/amongst different OCR engines.
char_y
The y pixel location (from left edge of image) for each result character. This is often used
in voting between/amongst different OCR engines.
char_dx
The x width in pixels for each result character.
char_dy
The y height in pixels for each result character.

route
The Route/Transit field as a separate string.

account
The Account field as a separate string.

92 Bar Code Reading Functions AMPLIB-Software Developer’s Toolkit

check
The Check number field as a separate string.

amount
The Amount field as a separate string.

epc
The External Processing Code (EPC) field as a separate string.

DoImage Repair
Output a repaired image

MaxTime
Limit the time to process an image. Input of 0 for no limits. Limits are input in units of
hundreds of a second. A value of 50 is one half a second.
StartTime
This must always be a 0 upon input. Upon return, the output value is the start time using
the timeb structure value in hundreds of a second.

Roi (Region of Interest)
Roi non 0 to use Region of interest parameters
RoiTopOffset non 0 -- reference top edge else bottom edge
RoiLeftOffset non 0 -- reference left edge else right edge
RoiX distance from Left/Right reference
RoiY distance from Top/Bottom reference
RoiDX distance along Left/Right reference
RoiDY distance along Top/Bottom reference

A non zero value indicates that the Region of Interest(ROI) parameters should be used to
define the region to be processed. The ROI parameters are offsets to the Active Sub Image
defined by the input workimage. The ROI parameters themselves are defined as offsets
to the Top or Bottom, Left or Right of the subimage. For example, a check image may be
of differing height but the MICR line is always offset from the bottom edge. When the
user wishes to process the image both in a 180 degree fashion, the active subimage is
rotated 180 degrees and the RoiTopOffset and the RotLeftOffset values are temporarily
complemented. The RoiX, RoiY, RoiDx and RoiDy parameters are now valid for the 180
degree case. To process a standard check MICR line would use a RoiY value of 0 and
RoiTopOffset of 0. The ROI can also be used to process different strips on the bottom of
a check by setting the RoiY value to the height of a strip.
It is sometimes desired to process the full width of an image or the full height without
really knowing what those values are. One of the other of the RoiDX or RoiDY
parameter can negative, in this case the input sub-image DX or DY is used as the
respective ROI parameter.

AMPLIB-Software Developer’s Toolkit Bar Code Reading Functions 93

ampReadOCR

int ampReadOCR(pW, pInfo)

PWORKIMAGE pW;
ampOCRINFO *pInfo;

This API is called to locate shapes on the image, convert those shapes to corresponding
ASCII codes, and then place those codes in the output data structure. The ampOCRINFO
structure is used to initialize parameters for ampReadOCR as well as communicate output
results back to the calling program. This API always returns 0 if the function was
successful, non-zero otherwise.
The ampReadOCR will perform the same functions as ampReadMICR but has been
expanded to cover the standard OCR A and B fonts.
The ampOCRINFO structure is shown below.

typedef struct of_ampOCRINFO {

 int lastchar;
 char resultchar[256];
 char bestchar[256];
 int percent[256];
 char translater[256];

int Singleline;
 int PassCount
 int Dorepair;
 int Do180;
 int DoneRepair ;
 int Done180 ;
 int Filter ;
 int Resolution

 int Code ;
 int NoBlanks ;
 int UseTranslator ;
 int NoRules ;
 int Rules ;
 int MinCon ;

 int char_x[256];
int char_y[256];
int char_dx[256];
int char_dy[256];
char route[20];

 char account[20];
 char check[20];
 char amount[20];
 char epc[20];
 long MaxTime ;
 long StartTime ;
 long Roi ;
 long RoiTopOffset ;
 long RoiLeftOffset ;
 Long RoiX ;
 Long RoiY ;

 Long RoiDX ;
 Long RoiDY ;

 } ampOCRINFO;

Setting Dorepair to the value 1 tells AMPLIB to use morphological
filters to process the input image in an attempt to remove stray pixels
and repair gaps in the characters. Setting Do180 to 1 enables AMPLIB
to read characters that are upside down (rotated 180 degrees) if normal
left-to-right reading failed. Setting Dorepair and Do180 to zero will
disable these read options.

After calling ampReadOCR, the variable lastchar contains the number
of characters read. Those characters plus additional preceding spaces
are located in the resultchar field. If a particular shape was not read
with sufficient accuracy, an ‘*’ character is used to mark its position.

94 Bar Code Reading Functions AMPLIB-Software Developer’s Toolkit

The fields bestchar and percent contain information representing the
confidence of the recognition process for a particular character.

A short example program is shown below.

ampMI.PassCount = 1 ;
ampMI.SingleLine = 0 ;
ampMI.Dorepair = 0;
ampMI.Do180 = 1;
ampMI.Resolution = - 1 ;// Use image resolution
ampMI.Code = 16 ; // OCRA alphanumeric+ special
ampMI.NoBlanks = 0 ; // Report blanks
ampMI.UseTranslator = 0;// Use default translation
ampMI.NoRules = 1; // No ABA Rules
ampMI.Rules = 0 ; // ABA rules
ampMinCon = 80 ; // Minimum confidence
ampMI.MaxTime = 0 ; // No limit on process time
ampMI.StartTime = 0 ; // Start must be zero
ampMI.ROI = 0 ; // NO Region of Interest
 // Use the whole subimage

nStat = ampReadOCR (pW, (PAMPOCRINFO) &MI);
if (nStat == 0)
{

i = ampMI.lastchar;
 ampMI.resultchar[i] = 0;
 strcpy (szResults,"Results: ");
 strcat (szResults, ampMI.resultchar);

MessageBox(hWnd, szResults, "OCR Characters Read",
MB_OK);

}
else
{

wsprintf(szResults,"Error %d occured during
OCRprocessing.",nStat);
MessageBox(hWnd, szResults, "MICR Read Error",
MB_OK|MB_ICONEXCLAMATION);

}

AMPLIB-Software Developer’s Toolkit Bar Code Reading Functions 95

Coupon Functions
This group of functions provides for rapid detecting and reading the contents of
Remitannce Coupons especially as found in Retail Lockbox processing. The two
main functions are for Detection and for Reading. When processing a large
number of intermixed coupons and checks, rapid detection of a coupon can
greatly improve the throughput of the process. For example a coupone with
multiple barcodes can be detected in a fraction of a second per core in use.
Whereas at the same time, processing the associated check can take much longer.

ampDetectCoupon

int ampDetectCoupon(pWfront, pWback,
nForceResolution, nField Count,
nDetected, nRotated180, nSide,
nFieldType1, SymbologyMask1,
CheckSum1, MinLength1, Maxlength1,
nFieldType2, SymbologyMask2,
CheckSum2, MinLength2, Maxlength2,
nLengthField1, nLengthField2,
cFieldResults1, cFieldResults2,
dx1, dy1, x1, y2,
dx1, dy1, x1, y2)

ampDetectCoupon (
PWORKIMAGE pWfront,
PWORKIMAGE pWback ,
int nForceResolution,
int nFieldsCount,
int *nDetected,
int *nRotated180,
int *nSide,

int nFieldType1 ,
DWORD SymbologyMask1,
BOOL Checksum1,
int MinLength1,
int MaxLength1,

int nFieldType2 ,
DWORD SymbologyMask2,
BOOL Checksum2,
int MinLength2,
int MaxLength2,

int *nLengthField1,
int *nLengthField2,
char cFieldResults1[200],
char cFieldResults2[200],
int *dx1, int *dy1, int *x1, int *y1,
int *dx2, int *dy2, int *x2, int *y2

96 Bar Code Reading Functions AMPLIB-Software Developer’s Toolkit

)

The ampDetectCoupon function will examine the Front image
and alternatively the Back image for the conditions that define a
Coupon. It will then report what, in anything, was found. In
many cases, the detection function is sufficient to provide all the
needed information about the coupon and no additional read is
necessary.

The ampDetectCoupon function will examine one or two fields
for the conditions tha define a Coupon. Those conditions are the
presence of the specific symbology (barcode or OCR), the
specific length of the result and additionally in future releases the
specific location and content.

The number of fields that will be used to detect a coupon is one or
two and this is input by the nFieldCount parameter.

The resolution of the image is usually contained in the image
structure but if this is wrong for any reason, the nForceResolution
value can be used to input the current information.
WARNING: The speed and quality of the coupon detection is
often directly related to how accurate the resolution is in the
image. It is not uncommon for scanner control software to place
a 96 in the dpi setting when the actual resolution is unknown.
This can effect the quality of OCR and some barcode reading
such as US Postal Codes which are defined to be a specific
physical size.

A typical condition for defining a coupon is the presence of the
USPS One Code. Most (but not all) addresses on retail coupons
will have a USPS One Code. By the same token, most checks
will not have such a code. Hence a coupon detector can have the
following settings:

nFieldType1 = 1 ; // barcode
SymbologyMask1 = BC_4STATEUSPS ; // usps one code only
MinLength1 = 40 ;
MaxLength1 = 80 ;

The ampDetectCoupon can be used to detect and read coupons
when the fields are general purpose barcodes. For example,
assume there are two barcodes, one has the amount due and is 6
digits and the other is the account and it is 8 digits. The following
settings will detect a two barcode image as a coupon:

nFieldType1 = 1 ; // barcode
SymbologyMask1 = BC_3of9; // Code 39
MinLength1 = 6 ;
MaxLength1 = 6 ;

nFieldType1 = 1 ; // barcode
SymbologyMask1 = BC_3of9; // Code 39
MinLength1 = 8 ;
MaxLength1 = 8 ;

In this case the result fields for length, value and location (if
output parameters present) will be set. A single call will provide
the detection and the values needed for processing this coupon.

AMPLIB-Software Developer’s Toolkit Bar Code Reading Functions 97

Another common detect and read case is for OCR characters in
the bottom or top clear band on the coupon. The amount of data
in a field tend to be very long in this case. Again, the length of
the result will determine if it is the Coupon. An example of this
is:

nFieldType1 = 2 ; // OCR
SymbologyMask1 = ampOCRANUM ; //OCR A numeric
only
MinLength1 = 50 ;
MaxLength1 = 80 ;

In addition to reporting the value of the field, important additional
information is present.

nRotated180 if true implies that the image was upside-down .

This is important to correct the image for future
usage. This information could also be used to
speed up check processing because it too is
likely upside down.

nSide if true, the field was found on the second image

and future processing needs to account for this
as well.

Future Efforts

The ampDetectCoupon function will have additional parameters

and conditions in the future:
Checksum Type There are many different checksums

calculations.

Extraction Technology Functions
In general, AMPLIB functions will find and read the contents of a class of
images with examples being barcodes, MICR characters and OCR fonts. The
Extraction Technology Functions will find(extract) images based on the edges of
the image within a frame. This may be a page of paper, a check, a coupon or just
about any rectilinear object shape within an image frame. The existing AMPLIB
functions all do this but most of it is embedded within a special class. The
Extraction Technology Functions generalize this capability.

The Extraction Functions are heavily based on the use of Sobel filters, that is
heavily enhanced Sobel filters. A web search will provide lots of basic
information on the general Sobel filter. Using a Sobel filter on an image can
enhance the appearance of edges to improve their detection and improve the
performance as well. It is also true that not all images will have an edge and the
software must adjust accordingly.

Once the image is determined, another critical component is the resolution of the
image. If the input image came from a standard scanner, then this information is
known. However often the interface between the scanner and the host does not
convey this information and it has to be auto determined. This is especially true
on any camera input such as a web cam, cell phone or WIFI connected camera.

98 Bar Code Reading Functions AMPLIB-Software Developer’s Toolkit

ampSobelEdgePrepEx

int ampSobelEdgePrepEx(PWORKIMAGE
pWsIn,PWORKIMAGE pWd,
ampPREPINFO *pinfo,int
nImageTypeIn, PAMPQUAD
virtualCoord,
int minDx, int minDy,
int nMinGlyphs, int nTypeGlyphs,
int *nFoundGlyphs,
int *nGlyphX, int *nGlyphY,int
*nGlyphDX, int *nGlyphDY,
int *nStrengthLeftOut, int
*nStrengthRightOut, int
*nStrengthTopOut, int
*nStrengthBottomOut)

ampSobelEdgePrepEx(
PWORKIMAGE pWsIn,
PWORKIMAGE pWd,
ampPREPINFO *pinfo,
int nImageTypeIn,
PAMPQUAD virtualCoord,
int minDx,
int minDy,
int nMinGlyphs,
int nTypeGlyphs,
int *nFoundGlyphs,
int *nGlyphX,
int *nGlyphY,
int *nGlyphDX,
int *nGlyphDY,
int *nStrengthLeftOut,
int *nStrengthRightOut,
int *nStrengthTopOut,
int *nStrengthBottomOut)

PWORKIMAGE pWd

The destination image will be the
cropped result. The resolution of the
image will be set to the found
resolution (in x and y) if resolution
detection was requested and was found.
In the case of a coupon and when
resolution was detected, the image
will be scaled so that there is only a
single resolution value for both x and
y.

AMPLIB-Software Developer’s Toolkit Bar Code Reading Functions 99

The location of the result in the
original image is reported in the
virtualCoord values. The location of
the gyphs will be reported relative to
the result image.

nImageTypeIn
 = 0 page
 = 1 check
 = 5 coupon
 = 6 coupon A (no glyph detection)
 = 7 back side(no glyph detection)

Virtual Coord

The Virtual coord are the locations of
the sub image in the original input
image with Corners of Upper Left,
Lower Left, Upper Right and Lower
Right (x,y in all cases).

minDx,minDy

The size of the back side of a check
or coupon should be the same as the
front side. These parameters provide
that information. In the future this
could also be used to input expected
size of a front size in a normalized
fashion. For example it could describe
the size expected if at 200 dpi. This
would then be adjusted based on the
actual dpi found.

minGlyphs
If this value is zero, a default is
used based on the ImageType. For
example, the default length of glyphs
for a check is 10. There are numerous
cases where this value should be
modified. If a MICR font is used on a
coupon but it only has a routing
number, then the minGlyphs should be
one less than the number of full size
MICR fonts. Special characters should
not be considered in the minGlyphs in
this case. Hence the minGlyphs for a
coupon with only a MICR routing number
should be 8.
In the case of coupons, the typical
glyph being found is an OCRA or OCRB
font. In this case a minGlyph count
should be at least half of the length
of gyphs expected. By having a larger
value for the min, random strings of
characters on the image are less
likely to have an effect or be
detected as the glyph of interest.

100 Bar Code Reading Functions AMPLIB-Software Developer’s Toolkit

nTypeGlyphs
 TBD

When implemented, this will allow the
caller to identify the glyph and hence
the GPI. For example:
 Glyph GPI
 MICR 8
 OCRA/B 10(typical)
 Postal Barcode 22
 General Barcode random

*nFoundGlyphs

The number of glyphs found on the
image.

*nGlyphX, *nGlyphY, *nGlyphDX, *nGlyphDY

The location and dimensions of the
located glyph. This can be used to
confirm that the resolution value is
valid base on the location of the
glyph on the image. For example, a
glyph on a check at the top probably
means it is upside down.
The DY value will be the height of the
glyph region which means it will be
taller because of any unadjusted skew,
which should be minimal. A DY much
taller than the expected glyph height
usually means that multi lines of
gyphs were found and the resulting
resolution will be decreased.

*nStrengthLeftOut, *nStrengthRightOut,
*nStrengthTopOut, *nStrengthBottomOut

The strength of the edge detection is
reported as values from 0 to 4. When
most of the edges are a zero, it means
that the object is detected by its
simple extent and not an edge. This
means that skew correction probably
did not occur.

AMPLIB-Software Developer’s Toolkit File and Image Transfer Functions 101

File and Image Transfer Functions
This group of functions provides for analyzing, loading and saving
images. Images may be loaded from disk, DIBs, or the Windows
clipboard. Images may be saved to disk or used to create a DIB.
Functions for loading (with decompression) and saving (with
compression) image files have some common features, described here.
The file organization type, given as ftype in the API calls, specifies one
of several possible file formats, such as TIFF, PCX, etc. The file format
defines how the image data is structured within the file and how it is to
be accessed, but not necessarily the data compression type.
Certain file formats uniquely identify a compression type, and others
support a choice of different compression types. The compression code
will be specified using a ctype argument in the API calls.
An ftype argument may be augmented by a compression type when you
need to explicitly define the compression code.
[Note on bit ordering: AMPLIB software follows the CCITT fax
convention for bit ordering, so the default bit order is LSB first. This
corresponds to TIFF Fill Order 2. If you need Fill Order 1, select the
Bit Byte Reversal option in the appropriate file function.]
The following file organizations (ftype) are supported by AMPLIB:

TIFF TIFF file, includes ViewStar TIFF format
PCX PCX
DCX Multi-page PCX
PDF Adobe-compatible PDF(output only)
NOHEADER Data only, no header
BMP Bitmap
JPG JPEG

The following compression types (ctype) are supported by AMPLIB:
G4 CCITT Group 4
G32 CCITT Group 3 2d
G31 CCITT Group 3 1d
TF2 Modified 1-dim. (TIFF Type 2)
NONE Uncompressed image data

As indicated above, you may sometimes augment a ftype argument with
a compression type, as might be needed for creating a specific kind of
TIFF file. The format for doing so is ctype/ftype.
For example, saving a file with a ftype of “TIFF” would create a TIFF
file, with the compression type defaulting to CCITT Group 4. To create
a Group 3 TIFF file, you would give a ftype of “G31/TIFF”.

102 File and Image Transfer Functions AMPLIB-Software Developer’s Toolkit

ampAnalyzeTagBuffer

int ampAnalyzeTagBuffer(pW, nImgnum,
pbyBuffer, nBufferSize)

PWORKIMAGE pW;
int nImgnum;
PBYTE pbyBuffer;
int nBufferSize;

This function accepts a TIFF file located in memory and performs an
analysis function to determine if the header tags conform to a UCD/187
minimally compliant file. These minimums are: G4 compression,
resolution of 200 or 240 dpi, Intel byte order, and width tag presence.
Files will not decompress if the width tag is missing.

 This function requires the presence of the Amplib feature license bit.

pW is the standard Amplib workimage structure which contains the
Workfile substructure used to access and advance through the TIFF
tags.
nImgnum is the image number and should always be set to 1.
pbyBuffer is the starting memory location of the buffer that contains the
TIFF image.
nBufferSize is the length of the TIFF image data in the memory buffer.

This API always returns 0 if the function was successful, non-zero
otherwise. A non-zero result implies non-conformance. This is not
intended to be an interpreter of failure, but just reporting failure.

AMPLIB-Software Developer’s Toolkit File and Image Transfer Functions 103

ampCreateDIB

int ampCreateDIB(pW, lphDIBS, dwDir)

PWORKIMAGE pW;
LPHANDLE lphDIB;
DWORD dwDir;

Creates a bilevel DIB in memory from image data in work image pW.
This function returns a handle back to the calling routine. That routine
must do a GlobalLock on the handle in order to obtain a pointer to the
DIB memory block. It is up to the calling routine to eventually release
the memory used in the DIB back to Windows by doing a DeleteObject
(hDIB).
dwDir is used to control the orientation of the DIB. dwDir = 0 selects
the normal bottom-up DIB. dwDir != 0 selects a top-down DIB
orientation.
This API always returns 0 if the function was successful, non-zero
otherwise.

104 File and Image Transfer Functions AMPLIB-Software Developer’s Toolkit

ampCreateDIBSection

int ampCreateDIBSection(pW, lphDIBSection,
dwDir)

PWORKIMAGE pW;
LPHANDLE lphDIBSection;
DWORD dwDir;

Creates a bilevel DIB in memory from image data in work image pW.
This function returns a handle back to the calling routine. That routine
must do a GlobalLock on the handle in order to obtain a pointer to the
DIB memory block. It is up to the calling routine to eventually release
the memory used in the DIB back to Windows by doing a DeleteObject
(hDIBSection).
dwDir is used to control the orientation of the DIB. dwDir = 0 selects
the normal bottom-up DIB. dwDir != 0 selects a top-down DIB
orientation.
This API always returns 0 if the function was successful, non-zero
otherwise.

AMPLIB-Software Developer’s Toolkit File and Image Transfer Functions 105

ampLoadClipboard

int ampLoadClipboard (pW, hWndMain)

PWORKIMAGE pW;
HWND hWndMain;

This function will load a work image pW from the contents of the
Windows clipboard provided that the clipboard can be obtained in a
DIB format.
This API always returns 0 if the function was successful, non-zero
otherwise.

106 File and Image Transfer Functions AMPLIB-Software Developer’s Toolkit

ampLoadDIB

int ampLoadDIB (pW, lpbmi, lpbits, style,
threshold)

PWORKIMAGE pW;
LPBITMAPINFO lpbmi;
LPBYTE lpbits;
long style;
long threshold;

This function will load a work image pW from a Windows DIB
(bitmap). The DIB must have been loaded into memory already. Both
style and threshold should be set to 0.
Bitmap (.BMP) files may be loaded directly into AMPLIB via the
ampLoadImage function.
This API always returns 0 if the function was successful, non-zero
otherwise.

AMPLIB-Software Developer’s Toolkit File and Image Transfer Functions 107

ampLoadDIBHandle

int ampLoadDIBHandle (pW, hDIB, style,
threshold)

PWORKIMAGE pW;
HANDLE hDIB;
long style;
long threshold;

This function will load a work image pW from a Windows DIB using
the DIB handle. The DIB must have been loaded into memory already.
Both style and threshold should be set to 0.
Bitmap (.BMP) files may be loaded directly into AMPLIB via the
ampLoadImage function.
This API always returns 0 if the function was successful, non-zero
otherwise.

108 File and Image Transfer Functions AMPLIB-Software Developer’s Toolkit

ampLoadDIBSectionHandle

int ampLoadDIBSectionHandle (pW, hDIBSection,
style, threshold)

PWORKIMAGE pW;
HANDLE hDIBection;
long style;
long threshold;

This function is similar to ampLoadDIBHandle, but takes a handle to a
DIB section instead of a handle to a DIB.
This API always returns 0 if the function was successful, non-zero
otherwise.

AMPLIB-Software Developer’s Toolkit File and Image Transfer Functions 109

ampLoadImage

int ampLoadImage (pW, filepathname, options,
ftype, imgnum)

PWORKIMAGE pW;
LPSTR filepathname;
LPSTR options;
LPSTR ftype;
int imgnum;

This function will read an image file into image pW. The file will be
decompressed as needed. If the ftype argument is NULL, the file will be
analyzed to determine its type.
Filepathname gives the pathname of the file to load. If the drive and
path are not given, the current drive and directory will be used.
Some common file name extensions are recognized:

TIF File is a TIFF file
OPT File is Optika format
PCX File is a Paintbrush PCX file
DCX File is a multi-image PCX
IMG File is assumed to ViewStar TIFF
BMP File is a Windows bitmap file
JPG File is a JPEG file

All of the G3 and G4 bilevel variations of the TIFF standard are
supported. Uncompressed grayscale and color TIFF files are
also supported. Loading a grayscale or color TIFF file into a
bilevel workimage will cause the image to be thresholded into
black and white. Loading a color image into a grayscale workimage
will cause the red, green, and blue components of each pixel to
be converted to gray. The packbits, LZW, and JPEG sub formats of
TIFF are not supported in the current release.
Options is a string of characters that describe optional processing for the
image data during load:

B Bit-byte-reverses the image data stream. (See File and Transfer
Function Introduction).

T=-1 Drop out read
T=-2 Drop out green
T=-3 Drop out blue

The T parameters (-1,-2, and -3) allow colored components to be
suppressed when loading color TIFF and JPEG files.

Ftype identifies the file organization, as described at the beginning of
this manual section. It is only needed when the type cannot be inferred
from the file header or filename extension.
Imgnum identifies which image in a multi-image TIFF file to load, from
1 to n.

110 File and Image Transfer Functions AMPLIB-Software Developer’s Toolkit

When loading files with header blocks (such as TIFF), using a variable
size image will be most convenient because the image size will be
adjusted automatically for you. When loading images with no header
information (and thus no size information) you should either:

 set the image metrics for image pW to the correct size for the
image, or

 set the input image size metrics with
ampSetInputImageMetrics

This API always returns 0 if the function was successful, non-zero
otherwise.
Examples:

ampLoadImage(pWMine, "002343.TIF", NULL,
 NULL, 1);
ampLoadImage(pWYours,"XYZ001.DAT", "R",
 "G31/NOHEADER", 0);
ampLoadImage(pWTemp, "J7201.002", "B",
 "RLC", 0);
ampLoadImage(pWTemp, "J7201.jpg", "t=-1",
 NULL, 0);

As a more advanced example, consider the following code fragment
which sequentially processes all the images in a multipage TIFF file by
using the Imgnum parameter. The routine nMICROutput is not shown,
but simply appends the passed text in szText to a binary file that has
already been opened with the file handle nFhndle. nMICRFCount is a
global variable used to count the number of files processed and
nMICRICount is another global used to count the number of images
found in those files.

Warning: There are many different sub formats within the various file
types listed and not all will load.

AMPLIB-Software Developer’s Toolkit File and Image Transfer Functions 111

 int nStat, nPage;
 int nCount;
 PWORKIMAGE pW;
 PWORKIMAGE pWMicr;
 ampMICRINFO ampMI;
 ampPREPINFO piInfo;
 HANDLE hFind;

 // Initialize workimage pointers
 pWMicr = NULL;
 pW = NULL;
 nPage = 1;
 nStat = 0;
 while ((nPage != 0) && (nStat == 0))
 {
 nStat = ampCreateWorkImage(&pW, 0, 0);
 if (nStat != 0)
 {
 // Check if there was an amplib problem
 wsprintf(szText,"Error %d occured while creating image structure.\r\n",
 nStat);
 nMICROutput(nFhndle, &szText[0]);
 return (0);
 }
 nStat = ampLoadImage(pW, szFile, "G=1", NULL, nPage);
 if (nStat != 0)
 {
 // Problem loading image
 if (nPage == 1)
 {
 // Problem loading the first image - this is not good
 nMICRFCount++;
 wsprintf(szText,"Error %d occured while loading image.\r\n",
 nStat);
 nMICROutput(nFhndle, &szText[0]);
 }
 else
 {
 // At least the first image was loaded correctly
 // Assume it was multipage, and all the images have been
 // processed
 nPage = 0;
 }
 break;
 }
 else
 {
 // Count the files processed
 if (nPage == 1)
 nMICRFCount++;
 // Count the images processed
 nMICRICount++;
 // Create a new bilevel AMP image
 nStat = ampCreateWorkImage (&pWMicr, 0, 0);
 if (nStat != 0)
 {
 wsprintf(szText,"Error %d when creating image.\r\n",
 nStat);
 nMICROutput(nFhndle, &szText[0]);
 ampFreeImage (pW);
 pW = NULL;
 return (0);
 }

 // Prep the image for MICR reading which may
 // include deskew, scaling and rotation
 piInfo.BlackEdges = 1;
 nStat = ampPrepMicr(pW, pWMicr, (PAMPPREPINFO) &piInfo);
 if (nStat)
 {
 wsprintf(szText,"Error %d occured during image
prep.\r\n",nStat);
 nMICROutput(nFhndle, &szText[0]);
 ampFreeImage (pWMicr);
 pWMicr = NULL;
 ampFreeImage(pW);

112 File and Image Transfer Functions AMPLIB-Software Developer’s Toolkit

 pW = NULL;
 return (0);
 }
 ampMI.Dorepair = 1;
 ampMI.Do180 = 1;
 ampMI.UseTranslator = 0 ;
 ampMI.NoBlanks = 0 ;
 ampMI.NoRules = 0 ;
 ampMI.Code = 0 ;
 ampMI.Resolution = -1 ;
 ampMI.MinCon = 80;
 nStat = ampReadMicr (pWMicr, (PAMPMICRINFO) &MI);
 if (nStat == 0)
 {
 i = ampMI.lastchar;
 ampMI.resultchar[i] = 0;
 wsprintf(szText,"%s \r\n", ampMI.resultchar);
 nMICROutput(nFhndle, &szText[0]);
 }
 else
 {
 wsprintf(szText,"Error %d occured during MICR processing.\r\n",
 nStat);
 nMICROutput(nFhndle, &szText[0]);
 }
 nPage++;
 ampFreeImage (pWMicr);
 pWMicr = NULL;
 ampFreeImage(pW);
 pW = NULL;
 }
 }
 if (pWMicr != NULL)
 {
 ampFreeImage (pWMicr);
 pWMicr = NULL;
 }
 if (pW != NULL)
 {
 ampFreeImage (pW);
 pW = NULL;
 }

AMPLIB-Software Developer’s Toolkit File and Image Transfer Functions 113

ampLoadImageHnd

int ampLoadImageHnd (pW, fid, options, ftype,
imgnum)

PWORKIMAGE pW;
HFILE fid;
LPSTR options;
LPSTR ftype;
int imgnum;

This function is the same as ampLoadImage except that this function
takes an open file handle (such as returned by _lopen or OpenFile) as an
argument instead of a file path name. The file is assumed to be opened,
readable, and positioned to the beginning of the file. The ftype argument
is only required if there is no recognizable header.
This API always returns 0 if the function was successful, non-zero
otherwise.

114 File and Image Transfer Functions AMPLIB-Software Developer’s Toolkit

ampLoadImageBuffer

int ampLoadImageHnd (pW, options, ftype,
imgnum, bufferaddr , buffersize)

PWORKIMAGE pW;
LPSTR options;
LPSTR ftype;
int imgnum;
LPBYTE bufferaddr;
int buffersize;

This function is the same as ampLoadImage except that this function
takes a memory buffer that has been preloaded with buffersize number
of data bytes read from any of the file types supported by AMPLIB. The
ftype argument is recommended because there is no filename extension
that can be used to help ascertain the file compression format.
This API always returns 0 if the function was successful, non-zero
otherwise.

AMPLIB-Software Developer’s Toolkit File and Image Transfer Functions 115

ampSaveClipboard

int ampSaveClipboard (pW, hWndMain)

PWORKIMAGE pW;
HWND hWndMain;

This function will save a work image pW to the Windows clipboard in a
DIB format.
This API always returns 0 if the function was successful, non-zero
otherwise.

116 File and Image Transfer Functions AMPLIB-Software Developer’s Toolkit

ampSaveImage

int ampSaveImage (name, filepathname, options,
ftype, kdy)

PWORKIMAGE name;
LPSTR filepathname;
LPSTR options;
LPSTR ftype;
int kdy;

The ampSaveImage API writes the image name to the disk file specified
by filepathname.
Some extensions are recognized:

TIF File is a TIFF file
PCX File is a Paintbrush PCX file
BMP File is a Bitmap
JPG File is a JPEG

Options is a string of characters that describe optional processing for the
image data during save:

A Appends image data to file; used for creating multi-image
format files.

B Bit-byte-reverses the image data stream. See note above.
Without this option, TIFF files will be created with Fill Order
2. With the B option, the Fill Order is set to 1.

Q Format is "Q=n", which sets the quality level for JPEG files.
R Format is "R=n", which sets the X and Y resolution tags in the

TIFF file to n; used when the resolution information is not
already known internally or you need to override the value.

X Format is "X=n", which sets the X-resolution tag in the TIFF
file to n.

Y Format is "Y=n", which sets the Y-resolution tag in the TIFF
file to n.

U Format is "U=n", which sets the ResolutionUnits tag in the
TIFF file to n; the default value is 2.

Ftype identifies the file organization to use, as described at the top of
this manual section. It is only needed when the file type cannot be
inferred from the filename extension, or you wish to override the value
implied by the file name extension.
Kdy is used only with Group 3-2d, and specifies the duplication factor.

This API always returns 0 if the function was successful, non-zero
otherwise.
Examples:

ampSaveImage(mine,"FD0023.TIF",
"R=200",NULL, 0);

ampSaveImage(mine,"STRANGE.XYZ",
"TB","G32/NOHEADER",4);

ampSaveImage(mine,"TEMP.PCX", NULL, NULL,
0);

AMPLIB-Software Developer’s Toolkit File and Image Transfer Functions 117

The first example writes a TIFF file with default parameters of Group 4
compression, forcing the resolution tag to be 200 dpi. The second
creates a headerless file with a non-standard extension, selects bit-byte-
reversal of the image data, and compresses the file using CCITT Group
3 -2d format with kdy=4. The third example creates a PCX file.

118 File and Image Transfer Functions AMPLIB-Software Developer’s Toolkit

ampSaveImageBuffer

int ampSaveImage (name, options, ftype, kdy,
pbyBuffer, nBufferSize,
pnBufferUsed)

PWORKIMAGE name;
PSTR filepathname;
PSTR options;
PSTR ftype;
int kdy;
PBYTE pbyBuffer;
int nBufferSize;
PINT pnBufferUsed;

The ampSaveImage API compresses the image name and writes the
compressed data to the memory buffer pointed to by pbyBuffer. The
memory buffer has a size of nBufferSize. When the operation
completes, the number of compressed image bytes is reported back
through pnBufferUsed. Only TIFF bilevel data formats are output to the
buffer.
Options is a string of characters that describe optional processing for the
image data during save:

B Bit-byte-reverses the image data stream. See note above.
Without this option, TIFF files will be created with Fill Order
2. With the B option, the Fill Order is set to 1.

R Format is "R=n", which sets the X and Y resolution tags in the
TIFF file to n; used when the resolution information is not
already known internally or you need to override the value.

X Format is "X=n", which sets the X-resolution tag in the TIFF
file to n.

Y Format is "Y=n", which sets the Y-resolution tag in the TIFF
file to n.

U Format is "U=n", which sets the ResolutionUnits tag in the
TIFF file to n; the default value is 2.

Ftype identifies the file organization to use, as described at the top of
this manual section. It is only needed when the file type cannot be
inferred from the filename extension, or you wish to override the value
implied by the file name extension.
Kdy is used only with Group 3-2d, and specifies the duplication factor.

This API always returns 0 if the function was successful, non-zero
otherwise.
Examples:

ampSaveImageBuffer(mine,"R=200",NULL, 0,
&byBuffer, sizeof(byBuffer), &nByteCount);

ampSaveImageBuffer(mine,
"TB","G32/NOHEADER",4, pbyBuffer, 100000,
nBufferUsed);

AMPLIB-Software Developer’s Toolkit File and Image Transfer Functions 119

The first example writes an equivalent TIFF file to memory with default
parameters of Group 4 compression, forcing the resolution tag to be 200
dpi. The second creates a headerless file in the buffer with a non-
standard extension, selects bit-byte-reversal of the image data, and
compresses the file using CCITT Group 3 -2d format with kdy=4.

120 File and Image Transfer Functions AMPLIB-Software Developer’s Toolkit

ampSaveImageHnd

int ampSaveImageHnd (name, fid, options,
ftype, kdy)

PWORKIMAGE name;
HFILE fid;
LPSTR options;
LPSTR ftype;
int kdy;

This function is the same as ampSaveImage except that this function
takes an open file handle (such as returned by _lopen or OpenFile) as an
argument instead of a file path name. The file is assumed to be opened,
have both read and write permission, and be positioned to where you
want to start writing the image data. The ftype argument is required to
specify the type of file to create.

This API always returns 0 if the function was successful, non-zero
otherwise.

AMPLIB-Software Developer’s Toolkit File and Image Transfer Functions 121

ampSetImageMargins

int ampSetImageMargins(pW, top, left, bottom,
right)

PWORKIMAGE Pw;
long top;
long left;
long bottom;
long right;

This function is used with variable size work images and the LoadImage
API. If the image margins are set to some non-zero value, additional
space will be allocated to form a margin, or frame around the image
data. The margin area will have undefined data, and after loading the
image, a subsequent call to ampOutsideFillImage should be made to
set it to all zeros or all ones.
This API always returns 0 if the function was successful, non-zero
otherwise.

122 File and Image Transfer Functions AMPLIB-Software Developer’s Toolkit

ampSetInputImageMetrics

int ampSetInputImageMetrics (Pw, dx, dy,
filepos)

PWORKIMAGE pW;
long dx, dy;
long filepos;

This function is used to specify the input image dimensions of a file
when the information cannot be determined by the file header. If this
function has not been called, the current sub-image metrics for the work
image will be used.

A second use for this function is to force decompression to terminate
early. For example, you may want to decompress only the top few
inches of a document to extract a bar code or other information; the rest
of the document isn't needed. You can specify a non-zero value for dy
to decompress only dy lines of the image. (When working with
structured image files, always set dx to 0, to ensure the correct dx value
is used from the header.)
The filepos parameter gives the byte offset from the start of the file
where the actual image data begins. This is normally 0, but can be
overridden by this function for files loaded into image pW.
This API always returns 0 if the function was successful, non-zero
otherwise.
Example:

ampSetInputImageMetrics(pWMine,2560,3296,0);
ampLoadImage(pWMine, "TEST1.G4","R=90",
 "G4/NOHEADER", 0);

AMPLIB-Software Developer’s Toolkit Image Manipulation Functions 123

Image Manipulation Functions

This group of functions provides capabilities for manipulating the image
data stored in work images. A variety of general-purpose functions are
included and are standard on all AMPLIB systems.

NOTE: Some Image Manipulation Functions may only accept binary images as inputs and outputs.
Functions that begin with ampGray generally accept grayscale or color images as inputs and outputs.
There are functions that can accept either binary, grayscale, or color images (e.g. ampClearImage,
ampCopyImage, ampFillImage, ampInvertImage, ampMirrorImage, ampOutsideFillImage and
ampRotateImage) and are so described in the text. Functions that use source and destination images
should be given work images that have the same pixel depth. Use ampConvertImage to convert pixel
depths between binary, grayscale, and color work image types

124 Image Manipulation Functions AMPLIB-Software Developer’s Toolkit

ampAnnotateImage

int ampAnnotateImage (pWDestname, szText,
szFont, szOptions, rectRegion)

PWORKIMAGE pWDestname;
PSTR szText;
PSTR szFont;
PSTR szOptions;
RECT *rectRegion;

The ampAnnotateImage API provides a general means of writing a text
annotation onto the image given by pWDestname.
szText is a string of characters (in the ANSI character set) that is to be
written onto the image. They will be written to the image area specified
by the rectRegion argument.
szFont gives the ASCII name of the typeface to be used when writing
the annotation. The font must be installed in your Windows system. For
best scaling performance choose a TrueType or ATM font.
szOptions is a string of characters that describe optional processing for
the image annotation prior to the save:

AMPLIB-Software Developer’s Toolkit Image Manipulation Functions 125

B Writes annotation with reversed background, e.g. white
characters on a black background.

F Draws a frame around the annotation region.
I Writes the annotation with italicized text.
J Specifies the justification desired for the text within the given

region. Format is "J=c" where c is as follows:
 L: Left justify
 C: Center
 R: Right justify

O Defines the orientation or slant of the annotation text baseline

and and is in the format “P=n” where n can be a positive or
negative number in tenths of degrees. Positive numbers rotate
the text counter-clockwise and negative numbers clockwise.
The default value is 0 which is traditional horizontal left-to-
right text. A negative value of -900 would create top-down
vertical text. Text starts at the X,Y offset as specified below.

P Defines the pitch of the text in the annotation and is in the

format “P=n” where n is 0-2 as follows:
 0: Default
 1: Variable
 2: Fixed
Q Defines which corner to anchor the annotation region to.
 Format is "Q=n", where n is 0 through 4 as follows:
 0: Anywhere on page
 1: Upper right hand corner
 2: Upper left hand corner
 3: Lower left hand corner
 4: Lower right hand corner
S Specifies the point size of the annotation text and is in the

format “S=n”. A 72 point font has uppercase letters one inch
tall.

T Writes annotation with transparent background.
U Annotation text is drawn with an underline.
W Specifies the weight of the strokes used in the annotation text

and is in the format “W=n”. A value of 400 is normal with
smaller values producing text with lighter/thinner strokes and
larger higher making text with bolder/thicker strokes. A value
of 0 selects the current value which is typically normal.

X Specifies the starting horizontal pixel location in the
annotation region where text will be begun in left justify
mode. The default value for left justified text is 8. The center
justify and right justify options automatically change this value
as required.

Y Specifies the starting vertical pixel location in the annotation
region where text will be begun. The default value is 0 which
is the top of the region.

rectRegion, along with the Q option, specifies where to write the
annotation stamp onto the image. rectRegion is a pointer to a RECT
structure and its use here is defined as follows (all values are long
integers in units of 1/100 inch):

 right width of stamp region
 bottom height of stamp region
 left horizontal offset inward from corner

top vertical offset inward from corner
The text will be written onto the image within the region specified,
using the requested options and font. If a frame has been requested, it

126 Image Manipulation Functions AMPLIB-Software Developer’s Toolkit

will be drawn with a single pixel line rectangle around the region. If the
text will not fit within the region, it will be clipped. No notification will
be given if clipping occurs.
Note that the requested annotation region size and position may be
adjusted by the program to maintain pixel alignment rules.
This API always returns 0 if the function was successful, non-zero
otherwise.

Examples:

RECT rectRegion;
rectRegion.top = 0;
rectRegion.left = 0;
rectRegion.right = 150;
rectRegion.bottom = 25;
ampAnnotateImage(pWDest, "000123", "Times New Roman",

"TFQ=4", &rectRegion);

AMPLIB-Software Developer’s Toolkit Image Manipulation Functions 127

ampBitBltImage

int ampBitBltImage (pWSrcname, pWDestname,
opcode)

PWORKIMAGE pWSrcname;
PWORKIMAGE pWDestname;
int opcode;

This function performs a generalized Bit Block Transfer (BitBlt) of
image data from image pWSrcname to image pWDestname using BitBlt
function opcode.
BitBlt operations are useful for performing a variety of bitwise-logical
functions on the image data. Both pWSrcname and pWDestname are
required arguments, but may be the same so that data may be
transformed in place. Opcode is given as a number and is defined as
follows:

0: source dest
1: source AND dest dest
2: source AND NOT dest dest
3: 0's dest
4: source OR NOT dest dest
5: source XNOR dest dest
6: NOT dest dest
7: source NOR dest dest
8: source OR dest dest
9: dest dest
10: source XOR dest dest
11: NOT source AND dest dest
12: 1's dest
13: NOT source OR dest dest
14: source NAND dest dest
15: NOT source dest

This API always returns 0 if the function was successful, non-zero
otherwise.

128 Image Manipulation Functions AMPLIB-Software Developer’s Toolkit

ampClearImage

int ampClearImage(pW)

PWORKIMAGE pW;
Clears the image pW to all zero pixels, which is the CCITT convention
for an all white page. Grayscale and color images are also set to white.
The grayscale white pixel value is 255. White color images have the
red, green, and blue component of each pixel set to 255.
This API always returns 0 if the function was successful, non-zero
otherwise.

AMPLIB-Software Developer’s Toolkit Image Manipulation Functions 129

ampConvertImage

int ampConvertImage (pWSrcname, pWDestname,
lStyle, lMode)

PWORKIMAGE pWSrcname;
PWORKIMAGE pWDestname;
long lStyle;
long lMode;

This function copies the image data from image pWSrcname to image
pWDestname converting pixel depths as needed. Consequently, source
and destination images may be any mixture of binary, grayscale, or
color. When converting from color to grayscale, the ratios of the red,
green, and blue color components to the final grayscale value are 30%,
59%, and 11%. When converting from color to binary or grayscale to
binary, a sophisticated edge-sensitive thresholding algorithm is used to
preserve as much fine detail as possible. This is especially significant
when the image has a MICR line or barcode to be read.
This function supports copying the subimage of the source to the
subimage of the destination. If the source subimage is larger than the
destination's then only the upper left portion of the data that fits will be
transferred.
Currently the parameters lStyle and lMode are reserved for features that
will be implemented sometime in the future. For now, simply set these
parameters to zero. This API always returns 0 if the function was
successful, non-zero otherwise.

130 Image Manipulation Functions AMPLIB-Software Developer’s Toolkit

ampCopyImage

int ampCopyImage (pWSrcname, pWDestname)

PWORKIMAGE pWSrcname;
PWORKIMAGE pWDestname;

This function copies the image data from image pWSrcname to image
pWDestname. Source and destination images may be both binary,
grayscale, or color. Do not mix binary, grayscale, or color images in the
same call.
This function supports copying the subimage of the source to the
subimage of the destination. If the source subimage is larger than the
destination's then only the upper left portion of the data that fits will be
transferred.
This API always returns 0 if the function was successful, non-zero
otherwise.

AMPLIB-Software Developer’s Toolkit Image Manipulation Functions 131

ampDeSkew

int ampDeSkew(pWSrcname, pWDestname, params)

PWORKIMAGE pWSrcname;
PWORKIMAGE pWDestname;
ampDESKEWINFO *params;

The binary or grayscale image pWSrcname will be copied into image
pWDestname rotating the image clockwise or counter-clockwise as
needed to remove any detected skew. How skew is detected, corrected,
and reported is controlled by the dereferenced params structure.
The fields of ampDESKEWINFO are defined as follows (see interface
reference file for latest definition).

typedef struct of_deskewinfo {

double MinSkew;
 double MaxSkew;;

 BOOL BlackEdges;
BOOL DetectOnly;

 int RegType;
 int Confidence; // input/output

 double SkewDetected; // out
 } ampDESKEWINFO;

MinSkew is the minimum amount of skew the process will work with
and is specified in degrees.
MaxSkew is the maximum amount of skew. Images with skews outside
the range of MinSkew-MaxSkew will not be modified.
BlackEdges causes the skew detection logic to look for black borders on
the source image when TRUE and white borders when FALSE.
DetectOnly detects the skew without modifying the image when set
TRUE. Results are reported back through the ampDESKEWINFO
structure.
RegType controls how the resultant image will be registered after the
deskew operation. Allowed values are: 0=Default, 1=Average, and
2=Forms.
With RegType=0, a white border will be applied to the frame as
determined by the greatest extents of the image border widths before
deskew.
With RegType=1, a white border will be applied to the frame as
determined by the average border widths before the deskew operation.
With RegType=2, the deskewed image data is repositioned so that the
top and left white border is removed.
Confidence is a value from 0 to 100 that limits deskew operations on
images of low quality. A typical Confidence value of 50 works fine for
most images. Lower numbers allow for deskew to take place with less
information, hence less reliable determination of the skew angle.
Higher numbers make the process more reliable, at the expense of not
performing deskew on some images with lower confidence numbers.
This value will be loaded with a computed value on return from the call,
so be sure to set it to a meaningful value before issuing the ampDeSkew
call.
SkewDetected contains the return value of the detected skew angle.

132 Image Manipulation Functions AMPLIB-Software Developer’s Toolkit

This API always returns 0 if the function was successful, non-zero
otherwise.

 Example:

ampDESKEWINFO deskewinfo;

deskewinfo.DetectOnly = FALSE;
deskewinfo.BlackEdges = TRUE;
deskewinfo.Confidence = 50;
deskewinfo.MinSkew = .15,
deskewinfo.MaxSkew = 45;
deskewinfo.RegType = 2;
deskewinfo.SkewDetected = 0;
nStat = ampDeSkew (pWSrc, pWDest, &deskewinfo);

AMPLIB-Software Developer’s Toolkit Image Manipulation Functions 133

ampDitherImage

int ampDitherImage (pWSrcname, pWDestname,
lStyle)

PWORKIMAGE pWSrcname;
PWORKIMAGE pWDestname;
long lStyle;

The grayscale image pWSrcname will be copied into the bilevel image
pWDestname dithering the destination image according to lStyle. If
lStyle is 0, an 8x8 grid dot pattern will be used that renders an effective
64 shades of gray. If lStyle is non-zero, a 4x4 pattern on a diagonal grid
is used that gives 16 shades of gray. After the operation, pWDestname
will have the same horizontal and vertical dimensions of pWSrcname.
This API always returns 0 if the function was successful, non-zero
otherwise.

 Example:
 lStyle = 0;

nStat = ampDitherImage (pWSrc, pWDest, lStyle);

134 Image Manipulation Functions AMPLIB-Software Developer’s Toolkit

ampFillImage

int ampFillImage(pW, color)

PWORKIMAGE pW;
WORD color;

This function will load either white or black into the work image pW
which may be either binary, grayscale, or color. Color is given as a 16-
bit unsigned integer value, which if zero will load white space into pW.
Any nonzero value will load black into a binary image. For grayscale
and color images, the complement of the Color value will be used for
the grayscale or color components. For example, a Color value of 1 will
set a grayscale pixel to 254 (near white). A Color value of 253 will set
the red, green, and blue components of a color work image pixel to 2
(dark black).
This API always returns 0 if the function was successful, non-zero
otherwise.

AMPLIB-Software Developer’s Toolkit Image Manipulation Functions 135

ampGrayMirrorImage

int ampGrayMirrorImage(pW, axis)

PWORKIMAGE pW;
char axis;

This function mirrors the grayscale or color data in the image pW about
the selected axis. Rows or columns of image data are interchanged in
such a way as to produce a mirror copy of the original, as would be
needed if a sheet of microfilm were scanned upside down. Axis is given
as 'X' or 'Y'. Choosing 'X' mirrors top-to-bottom, 'Y' mirrors left-to-
right.
This API always returns 0 if the function was successful, non-zero
otherwise.
Example:

ampGrayMirrorImage (pW, 'Y');

136 Image Manipulation Functions AMPLIB-Software Developer’s Toolkit

ampGrayProcesses

int ampGrayProcesses(pWs, Process)

PWORKIMAGE pWs;
int Process;

The ampGrayProcesses API performs one of many functions on the
grayscale data located within the subimage portion of the image.
Grayscale value range from 0 (black) to 255 (white).
Process may be one of the following operations:

GRAYLIGHTEN Lightens the grayscale image 8 steps. Values do
not exceed 255.

GRAYDARKEN Darkens the grayscale image 8 steps. Values are
truncated at 0.

GRAYREVERSE Grayscale values are switched from black-to-
white and from white-to-black.

GRAYSTRETCH Grayscale values from 32 - 224 are contrast
enhanced to range from 0 - 255. Values less than 16 become
black (0). Values greater than 232 become white (255).

GRAYCOMPRESS Image contrast is decreased by remapping
values from 0-255 to 32-224. This effectively reverses the
GRAYSTRETCH operation.

GRAYNORMALIZE The image is analyzed to find the minimum
and maximum grayscale values. These values then become the
new endpoints for a GRAYSTRETCH contrast enhancement.

GRAYTHRESHOLD The image will be thresholded to black and
white. All values below 128 will become black. All values
above and including 128 will become white.

GRAYMILDSHARPEN Enhances the edges of image features by
using a 3x3 Laplacian filter.

GRAYSTRONGSHARPEN Exaggerates the edges of image
features by using a 3x3 Laplacian filter.

GRAYMILDBLEND Softly blurs the edges of image features by
using a 3x3 Laplacian filter.

GRAYSTRONGBLEND Strongly blurs the edges of image
features by using a 3x3 Laplacian filter.

GRAYGAMMALIGHTEN1 Lightens the grayscale image non-
linearly in the midtone region. Gamma correction is used
primarily on grayscale images before dithering and then
printing to make the final output clearer on laser printers.

GRAYGAMMALIGHTEN2 Stronger lighten of the midtones than
GRAYGAMMALIGHTEN1. Strong blacks like those found
in the MICR line are preserved.

GRAYGAMMALIGHTEN3 Stronger lighten of the midtones than
GRAYGAMMALIGHTEN2.

GRAYGAMMAEQUAL Equalizes the grayscale values of the
image which generally improves the contrast when viewed.

GRAYGAMMASQRT The image is lightened using a square root
based non-linear algorithm.

AMPLIB-Software Developer’s Toolkit Image Manipulation Functions 137

GRAYGAMMASQUARE Darkens the image with a non-linear
transfer function.

GRAYGAMMALOG The image is lightened using a logarithm
based transfer function.

GRAYGAMMAINVLOG Darkens the image with a non-linear
transfer function based on inverse logarithms.

GRAYGAMMAGAUSSIAN The image is lightened with a
Gaussian based transfer function.

This API always returns 0 if the function was successful, non-zero
otherwise.
Examples:

ampGrayProcesses(pWGray,
GRAYLIGHTEN);

ampGrayProcesses(pWGray,
GRAYREVERSE);

ampGrayProcesses(pWGray,
GRAYSTRONGSHARPEN);

138 Image Manipulation Functions AMPLIB-Software Developer’s Toolkit

ampGrayScaleResolution

int ampGrayScaleResolution(pWSrcname,
pWDestname, Xres, Yres)

PWORKIMAGE pWSrcname;
PWORKIMAGE pWDestname;
int Xres;
int Yres;

The grayscale or color image pWSrcname will be scaled into image
pWDestname using independent scaling factors in the horizontal and
vertical directions. These scaling factors will be determined by taking
Xres and Yres and dividing by their corresponding values in
pWSrcname. Linear interpolation is used in the scaling process to
improve destination image accuracy.
This API always returns 0 if the function was successful, non-zero
otherwise.

 Example:

ampGrayScaleResolution (pWFax, pWTemp, 300,
300);

AMPLIB-Software Developer’s Toolkit Image Manipulation Functions 139

ampInvertImage

int ampInvertImage(pW)

PWORKIMAGE pW;
Inverts the sense of the image data in the binary, grayscale, or color
image pW. All white pixels are set to black and all black pixels are set
to white. For a binary image that means all "0" pixels are set to "1" and
all "1" pixels are set to "0." In a grayscale image, the values from 0
through 255 are mapped into the values from 255 through 0. In a color
image, the red, green, and blue color components from 0-255 are
individually converted to 255-0.
This API always returns 0 if the function was successful, non-zero
otherwise.

140 Image Manipulation Functions AMPLIB-Software Developer’s Toolkit

ampMirrorImage

int ampMirrorImage(pW, axis)

PWORKIMAGE pW;
char axis;

This function mirrors the data in the binary, grayscale, or color image
pW about the selected axis. Rows or columns of image data are
interchanged in such a way as to produce a mirror copy of the original,
as would be needed if a sheet of microfilm were scanned upside down.
Axis is given as 'X' or 'Y'. Choosing 'X' mirrors top-to-bottom, 'Y'
mirrors left-to-right.
This API always returns 0 if the function was successful, non-zero
otherwise.
Example:

ampMirrorImage (pWMain, 'X');

AMPLIB-Software Developer’s Toolkit Image Manipulation Functions 141

ampOutsideFillImage

int ampOutsideFillImage(pW, data)

PWORKIMAGE pW;
WORD data;

This function will load a constant value into the binary, grayscale, or
color image pW in the perimeter area outside of the sub-image area. For
example, if PITCH=HEIGHT=2048, X=Y=256, and DX=DY=1536,
then this function would fill a 256 pixel wide border around the sub-
image data.
Data is given as a 16-bit integer value, which is loaded into the image
16 pixels at a time for binary images. For grayscale and color images,
the complement of the Color value will be used for the grayscale or
color components. For example, a Color value of 1 will set a grayscale
pixel to 254 (near white). A Color value of 253 will set the red, green,
and blue components of a color work image pixel to 2 (dark black).
This function can be used as a simple crop or frame facility.
This API always returns 0 if the function was successful, non-zero
otherwise.

142 Image Manipulation Functions AMPLIB-Software Developer’s Toolkit

ampRotateImage

int ampRotateImage(pWSrcname, pWDestname,
angle)

PWORKIMAGE pWSrcname;
PWORKIMAGE pWDestname;
int angle;

The image pWSrcname will be rotated into image pWDestname by
angle degrees. Angle must be either 90, 180, or 270. Rotation is in the
counter-clockwise direction. Source and destination images may be both
binary, both grayscale or both color. Do not mix binary and grayscale
images in the same call.
This API always returns 0 if the function was successful, non-zero
otherwise.

 Example:

ampRotateImage (pW, pWRotate, 90);

AMPLIB-Software Developer’s Toolkit Image Manipulation Functions 143

ampScaleImage

int ampScaleImage (pWSrcname, pWDestname,
threshold,

 xpixels_in, xpixels_out,
 ypixels_in, ypixels_out)

PWORKIMAGE pWSrcname;
PWORKIMAGE pWDestname;
int threshold;
int xpixels_in, xpixels_out;
int ypixels_in, ypixels_out;

This function scales the input binary image pWSrcname into the output
image pWDestname using the scaling parameters given in the function
call. The xpixels_in and xpixels_out give the scaling parameters for the
X-axis; the ypixels_in and ypixels_out give the scaling parameters for
the Y-axis.
Threshold is used for some special case scale factors. When the x and y
scale factors are the same, the following scaling ratios are treated
specially: 2:1, 3:1, 4:1, 8:1
When using one of these special scaling ratios, you vary the "darkness"
of the result by adjusting the threshold between 1 and the scale factor
squared. E.g., for 3:1 scaling, the allowable threshold values are from 1
to 9. Smaller values will tend to darken (or embolden) characters; larger
values will lighten them. If you pass 0 for a threshold value, the API
will compute a value for you.
Examples:

ampScaleImage(pWOriginal, pWScaled, 5,
 3, 1, 3, 1);
ampScaleImage(pWOriginal, pWScaled, 0,
 4,3, 3, 2);

The first example scales the image 3:1 with a threshold of 5; i.e., for
every 3 input pixels, only one output pixel is produced. The second
example scales the image 4:3 in the horizontal (X-axis) direction and
3:2 in the vertical (Y-axis) direction.
Scaling bi-tonal images is problematic and the user should not assume
that the resulting image would be free of any distortion or breakup.
Because pixels in a bi-tonal image can only take on two values, 0 or 1,
fractional pixel scaling is not possible. A pixel is either present or not; it
cannot be made into a half-pixel. (This can be approximated in the gray-
scale domain, but not with a binary representation.) Thus, scaling is
performed by either duplicating pixels, or removing pixels. At small
scaling ratios, such as 2:3, pixel neighborhood operations can be
performed to improve appearance, but at higher ratios this is not
practical.

The requested scaling ratio
will be adjusted to fit a
calculated "sweet" scaling
ratio. Thus, very small
changes in the requested
ratio may produce no
difference in the output
scaling.

The scaling accuracy is typically within 2 percent. As an example,
consider a scaling ratio of 100:97, or a 3% reduction. Essentially, for
every 100 pixels input, 3 will be discarded. Where these pixels appear in
your image is unpredictable; they may result in "squeezing" some
characters on a line by one pixel. This results in a distortion of characters
that is visible to the eye. If the image width were 128, then 125 pixels
would be output, for an effective ratio of 128/125 = 2.34% reduction.

144 Image Manipulation Functions AMPLIB-Software Developer’s Toolkit

In order to achieve the best possible results, AMPLIB will perform a
greatest common denominator algorithm on the specified ratios to find
the closest matching nearest-neighbor algorithm for the desired ratio.
The algorithm guarantees the correct number of pixels in the output
image, although the actual scaling ratio used may be slightly different
than requested. The remainder of the output image will be padded with
white space.
This API always returns 0 if the function was successful, non-zero
otherwise.

AMPLIB-Software Developer’s Toolkit Image Manipulation Functions 145

ampThresholdImage

int ampThresholdImage (pWSrcname, pWDestname,
nDestResolution, &dblDestWidth,
&dblDestHeight, nType)

PWORKIMAGE pWSrcname;
PWORKIMAGE pWDestname;
int nDestResolution;
double * dblDestWidth;
double * dblDestHeight;
int nType;

The grayscale image pWSrcname will be dithered into the bilevel image
pWDestname. The type of dithering pattern is determined by nType and
may be one of the following values:
TIDITH64 0 - 64 shades of gray
TITHRESH128 1 - bilevel
TIDITH16 2 - 16 shades of gray
TICHECKEDGE 3 - check based
The final size of the destination image is determined by the
nDestResolution, dblDestWidth, and dblDestHeight input variables
according to the following conditions. If either dblDestWidth or
dblDestHeight is zero, then the output dimensions will be equal to the
input dimensions of pWSrcname multiplied by nDestResolution divided
by the resolution of pWSrcname. Otherwise the destination image will
have the size in inches specified by dblDestWidth and dblDestHeight at
the resolution specified by nDestResolution. The aspect ratio of the
original source image will be preserved so the actual final resolution
may not exactly equal dblDestWidth and dblDestHeight. Usually a
value of 600 for nDestResolution gives a good combination of
execution speed and image clarity. A value of 300 dpi will cause the
image transfer to happen faster with the final image having less detail.
The nType value of 3 selects a threshold process that assumes the result
will be a check image. This process can then use a feedback mechanism
to refine the image based on standard values for check images.
This API always returns 0 if the function was successful, non-zero
otherwise. If successful, dblDestWidth and dblDestHeight will be filled
with the final horizontal and vertical dimensions of pWDestname.

 Example:
 double dblWidth = 5.0;

double dblHeight = 4.0;
nStat = ampThresholdImage (pWSrc, pWDest, 600,
&dblWidth, &dblHeight, TIDITH64);

ampDynamicThreshold

int ampDynamicThreshold (pWSrcname,
pWDestname, PCS, ABSBLACKTHRESH,
HISTO, LOWPASS)

146 Image Manipulation Functions AMPLIB-Software Developer’s Toolkit

PWORKIMAGE pWSrcname;
PWORKIMAGE pWDestname;
double PCS;
int ABSBLACKTHRESH;
int HISTO;
int LOWPASS;

The grayscale image pWSrcname will be converted into the bilevel
image pWDestname using a dynamic thresholding technique very good
for checks particularly with background patterns and noise. This system
requires a high quality grayscale image (> 80 DPI and 256 levels of
gray). The function will return error code <202> if quality of grayscale
image is below these levels.
PCS defines the contrast ratio threshold with a range from 0-1. If PCS =
0.0 the system will use the default threshold of 0.15 which is known to
produce optimal b/w images for CAR/LAR recognition. Use a lower
setting to darken the image, a higher setting to lighten the image.
ABSBLACKTHRESH is the absolute black threshold. Any grayscale
pixel below this threshold will be converted to a black pixel in the
binary image. Default is set to 55 if ABSBLACKTHRESH = 0.

If HISTO = 1, the system will determine the optimal threshold curve
based on histogram analysis. Use HISTO = 0 only if you know the
images have good dynamic range for contrast. The histogram analysis
will require extra processing time. Good quality check scanners produce
images with good dynamic range. Use HISTO for using page scanner or
unknown scanning device.

If LOWPASS = 1, the system will filter out high frequency noise in the
grayscale image producing very clean image with low compressed fiel
size. Set LOWPASS = 0 if this operation is not desired.

The Pitch of the b/w image will be increased to ensure the image rows
end on a byte boundary with white pixels added for padding.

AMPLIB-Software Developer’s Toolkit Image Filtering Functions 147

Image Filtering Functions
This class of functions performs binary algorithmic and morphological
filtering operations on images, as would be used for image
enhancement, background removal, etc. You must have the Image Filter
option set in your license file to use these functions.

148 Image Filtering Functions AMPLIB-Software Developer’s Toolkit

ampDeBorder

int ampDeBorder(pWSrcname, pWDestname,
NoiseWidth, TotalRemoved)

PWORKIMAGE pWSrcname;
PWORKIMAGE pWDestname;
int NoiseWidth;
PINT TotalRemoved;

The binary image pWSrcname will be copied into image pWDestname
removing black border pixels. White noise within the black edge may
be ignored as long it has an overall linear dimension less than
NoiseWidth. The function will set the dereferenced TotalRemoved
parameter to the number of pixels that were removed from all edges.
This API always returns 0 if the function was successful, non-zero
otherwise.

 Example:
 nNoiseWidth = 10;

 nTotalRemoved = 0;
// Deborder the source image into the destination image
nStat = ampDeBorder(pWSrc, pWDest, nNoiseWidth,

&nTotalRemoved);

AMPLIB-Software Developer’s Toolkit Image Filtering Functions 149

ampDeLine

int ampDeLine(pWSrcname, pWDestname, params,
results)

PWORKIMAGE pWSrcname;
PWORKIMAGE pWDestname;
ampDELINEINFO *params;
ampLINEOBJECT *results;

The binary image pWSrcname will be copied into image pWDestname
removing lines in the process. The definition of what constitutes a line
is controlled by the dereferenced params structure. The locations of the
lines removed are returned in an array of ampDELINEINFO structures,
pointed to by results.
The fields of ampDELINEINFO are defined as follows (see interface
reference file for latest definition).

typedef struct of_delineinfo {

int MinLineWidth;
 int MaxLineWidth;

 int MinLineHeight;
int MaxLineHeight;

 int LineGap;
 int MaxExports; // input/output

 BOOL DetectOnly;
 BOOL EdgeClean;
 int SmearGap;

 } ampDELINEINFO;

MinLineWidth is the minimum pixel length of candidate line objects.
Objects shorter than this will be retained in the destination image.
MaxLineWidth is the maximum pixel length of candidate line objects.
MinLineHeight is the minimum pixel thickness that candidate lines must
have.
MaxLineHeight marks the maximum pixel thickness threshold for
candidate lines.
LineGap specifies how many white pixels may separate adjoining line
segments before those line segments cease to be identified as a line.
Breaks in lines larger than LineGap are treated as separate lines.
MaxExports is the number of ampLINEOBJECT structures that have
been allocated for result reporting. On output, it returns the number of
line objects.
DetectOnly inhibits bitmap line removal if TRUE, but still reports back
the operational results as if line removal had occurred

EdgeClean aggressively removes noise pixels from the top and bottom
edges of the line while removing the line. Set to TRUE if lines are not
being thoroughly removed.
SmearGap performs a deline operation, a smear, and then another deline
if nonzero. This is often used with black lines containing reverse text.
The first deline will remove the "lines" above and below the text. The
smear will fill in the text and make a fully connected line. Finally the
new line is removed.

150 Image Filtering Functions AMPLIB-Software Developer’s Toolkit

The fields of ampLINEOBJECT are defined as follows (see interface
reference file for latest definition).

typedef struct of_lineobject {

long x1; // x,y of line beginning
long y1;
long x2; // x,y of line end
long y2;
int width; // line thickness

 } ampLINEOBJECT;

This API always returns 0 if the function was successful, non-zero
otherwise.

 Example:
 lineCount = 50;
 lineWidth = 1000

lineResults = (PAMPLINEOBJECT) calloc (lineCount *
sizeof

(ampLINEOBJECT), 1);

 // Clear out input and output parameters
 memset (&delineInfo, 0, sizeof (ampDELINEINFO));

 delineInfo.MinLineWidth = lineWidth / 2;
 delineInfo.MaxLineWidth = lineWidth;
 delineInfo.MinLineHeight = 1;
 delineInfo.MaxLineHeight = lineWidth / 100;
 delineInfo.LineGap = 5;
 delineInfo.SmearGap = 5;
 delineInfo.MaxExports = lineCount;
 delineInfo.DetectOnly = 0;
 delineInfo.EdgeClean = 1;

 // Deline the source image into the destination image

 nStat = ampDeLine(pWCheck, pWTemp, &dlInfo,
lineResults);

AMPLIB-Software Developer’s Toolkit Image Filtering Functions 151

ampDeShade

int ampDeShade(pWSrcname, pWDestname, params,
results)

PWORKIMAGE pWSrcname;
PWORKIMAGE pWDestname;
ampDESHADEINFO *params;
ampSHADEOBJECT *results;

The binary image pWSrcname will be copied into image pWDestname
removing regions of half-toning usually caused by watermarks or
photographs. The definition of what constitutes a shade region is
controlled by the dereferenced params structure. Locations of the
erased regions are reported back through results which points to an
array of ampDESHADEINFO structures.
 The fields of ampDESHADEINFO are defined as follows (see interface
reference file for latest definition).

typedef struct of_AMPDESHADEINFO {

int MinRegionWidth;
 int MinRegionHeight;

 int MinSpecWidth;
int MinSpecHeight;

 int SpecWidthAdj;
 int SpecHeightAdj;

 int MaxExports; // in/out
 BOOL DetectOnly;

 } ampDESHADEINFO;

MinRegionWidth is the minimum horizontal pixel width of candidate
shade region objects. Objects narrower than this will be retained in the
destination image.
MinRegionHeight is the minimum vertical pixel height of candidate
regions.
MinSpecWidth is the expected horizontal pixel dimension of speckles
within the shade region.
MinSpecHeight is the expected vertical pixel dimension of speckles
within the shade region.
SpecWidthAdj is reserved for future use.
SpecHeightAdj is reserved for future use.
MaxExports defines the number of ampDESHADEINFO structures on
input and returns how many shade objects were processed on output.
DetectOnly inhibits shade region removal if TRUE, but still locates and
reports back the objects found via results.

The fields of ampSHADEOBJECT are defined as follows (see interface
reference file for latest definition).

typedef struct of_shadedobject {

long x;
long y;
long dx;
long dy;

152 Image Filtering Functions AMPLIB-Software Developer’s Toolkit

long ModifiedComponents;
long ModifiedRuns;
long ModifiedPixels;

 } ampSHADEOBJECT;
x is the horizontal location of the upper left corner of the region.
y is the vertical location of the upper left corner of the region.
dx is the region width.
dy is the region height.
ModifiedComponents is the total number of runs and pixels found in this
shade object.
ModifiedRuns specifies how many black runs were modified and
changed to white runs when erasing this particular shaded region.
ModifiedPixels specifies how many black pixels were erased while
removing this shade region.
This API always returns 0 if the function was successful, non-zero
otherwise.

 Example:

shadeCount = 50;
pshadeResults = (PAMPSHADEDOBJECT) calloc

(shadeCount * sizeof (ampSHADEDOBJECT), 1);
 // Clear out input and output parameters
 memset (&deshadeInfo, 0, sizeof (ampDESHADEINFO));
 deshadeInfo.MinRegionHeight = 30;
 deshadeInfo.MinRegionWidth = 20;
 deshadeInfo.MinSpecWidth = 4;
 deshadeInfo.MinSpecHeight = 4;
 deshadeInfo.SpecWidthAdj = 4;
 deshadeInfo.SpecHeightAdj = 4;
 deshadeInfo.MaxExports = shadeCount;

 // Deline the source image into the destination image
nStat = ampDeShade(pWS, pWD, &deshadeInfo,

pshadeResults);

AMPLIB-Software Developer’s Toolkit Image Filtering Functions 153

ampDeSpec

int ampDeSpec(pWSrcname, pWDestname, params)

PWORKIMAGE pWSrcname;
PWORKIMAGE pWDestname;
ampDESPECINFO *params;

The binary image pWSrcname will be copied into image pWDestname
removing small speckles that are usually caused by scanning noise. The
definition of what constitutes a speckle is controlled by the dereferenced
params structure.
The fields of ampDESPECINFO are defined as follows (see interface
reference file for latest definition).

typedef struct of_AMPDESPECINFO {

int MinWidth;
 int MaxWidth;

 int MinHeight;
int MaxHeight;
int ConnectivityType;
long TotalPixels;
long TotalPixelsModified;
long TotalComponents;
long TotalComponentsModified;

 } ampDESPECINFO;

MinWidth is the minimum horizontal pixel width of candidate speckles
objects. Objects narrower than this will be retained in the destination
image.
MaxWidth is the maximum allowed horizontal pixel width for a speckle
candidate object.
MinHeight is the minimum vertical pixel dimension for candidate
speckle objects.
MaxHeight specifies the maximum allowed vertical pixel height for a
speckle.
ConnectivityType specifies to the despeckle engine the kind of
connectivity definition to use during the operation. 4-neighbor (or 4-
connected) means the adjacent pixels to the North, East, South, and
West. A value of 8 tells the software to use these four plus the 4
diagonal neighbors.
TotalPixels specifies how many black pixels were counted in the image.
TotalPixelsModified specifies how many black pixels were made white
during the despeckle operation.
TotalComponents is the total number of connected shapes found in the
image.
TotalComponents Modified is the number of connected shapes in the
image that qualified by size as speckles and which were consequently
removed from the image.

This API always returns 0 if the function was successful, non-zero
otherwise.

 Example:

154 Image Filtering Functions AMPLIB-Software Developer’s Toolkit

 // Clear out input and output parameters
 memset (&despecInfo, 0, sizeof (ampDESPECINFO));

 // Set input parameters to define speckle size
 despecInfo.MinWidth = 1;
 despecInfo.MaxWidth = 3;
 despecInfo.MinHeight = 1;
 despecInfo.MaxHeight = 3;
 despecInfo.ConnectivityType = 8;

 // Deline the source image into the destination image

nStat = ampDeSpec(pWSrc, pWDest, &despecInfo);

AMPLIB-Software Developer’s Toolkit Image Filtering Functions 155

ampDeStreak

int ampDeStreak(pWSrcname, pWDestname, params)

PWORKIMAGE pWSrcname;
PWORKIMAGE pWDestname;
ampDESTREAKINFO *params;

The binary image pWSrcname will be copied into image pWDestname
removing streaks. The definition of a streak is controlled by the
dereferenced params structure.
The fields of ampDESTREAKINFO are defined as follows (see
interface reference file for latest definition).

typedef struct of_AMPDESTREAKINFO {

int MinWidth;
 int MaxWidth;

 int Color;
 // results output

long TotalPixels;
long TotalPixelsModified;
long TotalRuns;
long TotalRunsModified;

 } ampDESTREAKINFO;

MinWidth is the minimum horizontal pixel width of candidate streak
objects. Objects narrower than this will be retained in the destination
image.
MaxWidth is the maximum allowed pixel width for streaks.
Color specifies the color of the streak: black (1) or white (0).
TotalPixels reports back how many Color pixels are contained in the
image.
TotalPixelsModified reports how many pixels were changed to erase the
streak.
TotalRuns reports the number of Color runs contained in the image.
TotalRunsModified reports the total number of runs changed to remove
the streak.

This API always returns 0 if the function was successful, non-zero
otherwise.

 Example:
 // Clear out input and output parameters

 memset (&destreakInfo, 0, sizeof (ampDESTREAKINFO));
 destreakInfo.MinWidth = 500;

 destreakInfo.MaxWidth = 1000;
 destreakInfo.Color = 1;
 // Destreak the source image into the destination image

 nStat = ampDeStreak(pWS, pWD, &destreakInfo);

156 Image Filtering Functions AMPLIB-Software Developer’s Toolkit

ampFilterImage

int ampFilterImage (pWSrcname, pWDestname,
filter_type, sub_code, threshold)

PWORKIMAGE pWSrcname;
PWORKIMAGE pWDestname;
LPSTR filter_type;
LPSTR sub_code;
int threshold;

This API provides a wide set of powerful binary filter operators that can
be used to enhance images, remove backgrounds, reduce noise, etc.
Each filter type has a set of sub-codes that further define the filter
operation. The image data in srcname will be filtered and written to
image destname.
Filter_type defines the class of filter operation to perform. The
following filters are available:

majority A directional majority filter that can preserve certain
structures within the image.

erode An erosion filter useful for thinning image elements
dilate A dilation filter useful for fattening image elements.
spot A spot removal (de-speckel) filter.

For erode, dilate, and spot filters, the sub-code can be given as 'weak'
(4-neighbor) or 'strong' (8-neighbor) to control the strength of the
effect.
4-neighbor (or 4-connected) means the adjacent pixels to the North,
East, South, and West. 8-neighbor, (or 8-connected), means any
adjacent pixel in a surrounding 3x3 box.
For the majority filter, a variety of sub-code values can be used.
Note: the majority filters, which control preservation of lines, act only
on single pixel width lines. These filters can be useful in removing fine
line screens, as appear in some negotiable documents, but they are not
generalized line removal functions.

AMPLIB-Software Developer’s Toolkit Image Filtering Functions 157

Filter Type Sub Code Definition
ERODE WEAK 4- neighbor erosion. Can be used

to lighted lines. If any of 4-
connected neighbors are white, the
pixel will be set white. This filter
can remove single pixel lines.

ERODE STRONG 8- neighbor erosion. A more
aggressive filter than 4-neighbor,
this will set the pixel white if any
of the eight-connected neighbors
are white.

DILATE WEAK 4- neighbor dilation. This filter
darkens an object by setting a pixel
black if any of its 4-connected
neighbors are black.

DILATE STRONG 8- neighbor dilation The filter
darkens an object by setting a pixel
black if any of its 8 neighbors are
black.

SPOT WEAK 4x4 neighbor spot removal. A
more aggressive spot removal
filter. It will remove any black
pixels in a 2x2 region if all the
pixels in the surrounding 4x4
region are white.

SPOT STRONG 6x6- neighbor spot removal. An
even more aggressive spot removal
filter. It will remove any black
pixels in a 2x2 region if all the
pixels in the surrounding 6x6
region are white.

SPOT SINGLE Single pixel spot removal. If all 8
neighbors of a pixel are white, the
pixel is set to white.

MAJORITY NORMAL Standard majority filter. The
number of black pixels in a 3x3
region is compared to a threshold.
If the count >= the threshold, sets
the center pixel to black, else sets
the center pixel to white. Preserves
features in image.

MAJORITY ERODE A weighted erosion filter. The
number of white pixels in a 3x3
region is compared to a threshold.
If the count >= the threshold, sets
the center pixel to white. Preserves
features in image.

MAJORITY DILATE A weighted dilation filter. The
number of black pixels in a 3x3
region is compared to a threshold.
If the count >= the threshold, sets
the center pixel to black. Preserves
features in image.

MAJORITY SPUR Removes single-pixel growths
from vertical line edges

MAJORITY BUMP1 Removes one pixel growths from
vertical line edges

MAJORITY BUMP2 Removes two pixel growths from
vertical line edges

158 Image Filtering Functions AMPLIB-Software Developer’s Toolkit

MAJORITY NORMAL_NP A weighted filter that does not try
to preserve single pixel lines in
horizontal, vertical, and diagonal
directions.

MAJORITY NORMAL_NPH Like NORMAL, except that it
preserves all but horizontal lines.

MAJORITY NORMAL_NPV Like NORMAL, except that it
preserves all but vertical lines.

MAJORITY NORMAL_NPD Like NORMAL, except that it
preserves all but diagonal lines.

MAJORITY NORMAL_NPNE Like NORMAL, except that it
preserves all but NorthEast to
southwest diagonal lines.

MAJORITY NORMAL_NPNW Like NORMAL, except that it
preserves all but Northwest to
Southeast diagonal lines.

MAJORITY ERODE_NPH Like ERODE, except that it
preserves all but horizontal lines.

MAJORITY ERODE_NPV Like ERODE, except that it
preserves all but vertical lines.

MAJORITY ERODE_NPD Like ERODE, except that it
preserves all but diagonal lines.

MAJORITY ERODE_NPNE Like ERODE, except that it
preserves all but Northeast to
Southwest diagonal lines.

MAJORITY ERODE_NPNW Like ERODE, except that it
preserves all but Northwest to
Southeast diagonal lines.

MAJORITY DILATE_NPH Like DILATE, except that it
preserves all but horizontal lines.

MAJORITY DILATE_NPV Like DILATE, except that it
preserves all but vertical lines.

MAJORITY DILATE_NPD Like DILATE, except that it
preserves all but diagonal lines.

MAJORITY DILATE_NPNE Like DILATE, except that it
preserves all but Northeast to
Southwest diagonal lines.

MAJORITY DILATE_NPNW Like DILATE, except that it
preserves all but Northwest to
Southeast diagonal lines.

Threshold is used only for the majority filter, and ranges from 0 to 9. A
threshold value of 5 is considered neutral. Lower values will give darker
looking images; higher values will tend to lighten the image.
This API always returns 0 if the function was successful, non-zero
otherwise.
Examples:

ampFilterImage(pWSrc, pWDest, "majority",
 "erode_npd", 5);

ampFilterImage(pWSrc, pWDest, "dilate",
 "weak", 0);

The first example filters image 'old' into image 'new', using a majority
filter with an erosion algorithm that deletes diagonal lines. The second
example runs a weak (4-neighbor) dilation filter.

AMPLIB-Software Developer’s Toolkit Image Filtering Functions 159

Background Removal Filter
The FilterType Major has three special subfilters: 200, 201 and 202.
These filters will remove the background from a large class of images
and leave the forground (text) information. Each one will also accept a
threshold value to increase the degree of removal. The subfilters 200
and 202 also perform a test to determine if background noise is present
before running the removal filter. If not present no filter operation is
performed. The subfilter 200 uses the lower 5/8" of the image to
determine background (MICR line on a check). The subfilter 202 uses
the middle 1/3rd of the image to determine background (CAR/LAR
region on a check). The subfilter 201 will perform the removal filter
regardless as no test is performed.

The strength or amount of background removal is determined by the
threshold value from 1 to 9 with 9 being the most aggressive
background removal and 1 the least. When used for preparing an image
for OCR, the aggressive value of 8 is often used. When the same image
is being prepared for printing, the value of 6 is often used. This will
leave some noise on the image but will not impact the small text content
of the image.
Example:

ampFilterImage(pWSrc, pWDest, "major",
 "200", 9);

AMPLIB-Software Developer’s Toolkit Miscellaneous Functions 161

Miscellaneous Functions
This group of functions provide additional capabilities and
programming tools. Functions that begin with ampGray may only
accept grayscale images as inputs and/or outputs.

162 Miscellaneous Functions AMPLIB-Software Developer’s Toolkit

ampAssembleMICR

int ampAssembleMICR (PSTR pszAuxOnUs, PSTR
pszEPC, PSTR pszRoute, PSTR
pszOnUs, PSTR pszAmount,
PSTR pszTranslation, PSTR
pszOutputMICR)

PWORKIMAGE pW;
PSTR pszAuxOnUs ;
PSTR pszEPC ;
PSTR pszRoute;
PSTR pszOnUs ;
PSTR pszAmount;
PSTR pszTranslation ;
PSTR pszOutputMICR ;

This function provides a method to assemble a single MICR line from
the fields found on a check image. If the pszTranslation parameter is not
NULL, it will also translate the control to the users preference.

Accept strings representing the Aux On Us, EPC, Route, On Us, and
Amount data and construct an output MICR string in a traditional
format using the special characters A,B,C,D, and -. If a translation table
is provided, the output characters will be translated. If input strings are
not present or are some way in error, the assembly process will try to
continue. Route data must be present and consist of 9 or 11 characters.
An embedded dash in the route data is acceptable.

 The MICR output will be in the following left-to-right format:

 Aux On Us (max length 17 characters)
 Space (1 character if Aux On Us data present)
 EPC (max length 1 character)
 Routing (fixed length 11 characters)
 On Us (max length 20 characters)
 Space (1 character if input Amount data present)
 Amount field (fixed length 12 characters if present)

pszAuxOnUs - If non null, the pointer to the input Aux On Us string

Numeric data must be represented by the characters 0-
9 and the On Us symbol by / or c or C.

pszEPC - If non null, the pointer to the input EPC string
 Numeric data must be represented by the characters 0-9.

pszRoute - The pointer to the input Route string

AMPLIB-Software Developer’s Toolkit Miscellaneous Functions 163

Numeric data must be represented by the characters 0-9
and the optional Route character by a or A. The string
length must be 9 (no route characters) or 11 (beginning
and end route character present).

pszOnUs - If non null, the pointer to the input On Us string

Numeric data must be represented by the characters 0-9
and the On Us symbol by / or c or C.

pszAmount - If non null, the pointer to the input Amount string

Numeric data must be represented by the characters 0-9
and the optional amount character by b or B if the
amount characters are present.

szTranslation - ASCII character translation string -
If present all assembled MICR output is translated
through this table.

 Output Parameters:

 pszOutputMICR - If non null, the pointer to the output string that will
contains all the MICR fields in Aux OnUs, EPC, Route, OnUs,
Amount order.

 Return Code - 0 if there were no problems parsing the input string.
Otherwise the number returned is an AMPLIB error code - typically
ampERR_INVARG (47)

164 Miscellaneous Functions AMPLIB-Software Developer’s Toolkit

ampCheckImageQuality

int ampCheckImageQuality(pW, pQInfo

PWORKIMAGE pW;
ampQUALITYINFO *pQInfo;

This API performs a series of image quality measurements on the input
bilevel image in order to determine its suitability for incorporation as a
check front or back image in a .937 format image cash letter file.
Financial institutions have guidelines that establish acceptable limits for
check image sizes, G4 compression size, overall check darkness, etc.
The ampQUALITYINFO structure serves as a medium for passing
input parameters to the function and for passing output parameters back
out.
The ampQUALITYINFO structure is shown below.

typedef struct of_ampQUALITYINFO {
 // Input Parameters
 int nCornerSampleXSize;

int nCornerSampleYSize;
int nBlackBorders;

 int nStreakDensity;
// Input/Output Parameters

 Int nXPixelSize;
 int nYPixelSize;
 // Output Parameters
 int nXRes;
 int nYRes;
 DWORD dwTotalG4Length;
 DWORD dw3x3Count;
 DWORD dwBlobSites;
 DWORD dwStreakCount;
 BLOBDATA blobLoc[MAXBLOBCOUNT
 BLOBDATA streakLoc[MAXSTREAKCOUNT];
 DWORD dwULPeakRun;
 DWORD dwURPeakRun;
 DWORD dwLLPeakRun;
 DWORD dwLRPeakRun;
 DWORD dwPeakRunLength;
 DWORD dwRunOneCount;
 DWORD dwRunTwoCount;
 DWORD dwSpare1;
 double dblAvgRunLength;
 double dblBlackDensity;
 double dblTotalSkew;
 double dblULAvgRun;
 double dblULBlack;

double dblURAvgRun;
 double dblURBlack;
 double dblLLAvgRun;
 double dblLLBlack;
 double dblLRAvgRun;
 double dblLRBlack;
} ampQUALITYINFO;

The BLOBDATA structure used to define two arrays has the following
format:

typedef struct blobdata {
 int x ;
 int y ;
 int dx ;
 int dy ;
 } BLOBDATA;

The blobLoc array has 8 elements and the streakLoc array has 10 as
defined by the following constants.

#define MAXBLOBCOUNT 8

AMPLIB-Software Developer’s Toolkit Miscellaneous Functions 165

#define MAXSTREAKCOUNT 10

INPUTS - Before calling ampCheckImageQuality, the following input
variables need to be defined.

nCornerSampleXSize

Width of rectangle used to measure torn corners - in .001 of inch
–
 250 is 1/4 inch. A good typical value for front and back check
 images is 750 or 3/4 inch.

nCornerSampleYSize

Height of rectangle used to measure torn corners - in .001 of inch
 250 is 1/4 inch. A good typical value for front and back check
 images is 750 or 3/4 inch.

 nBlackBorders

Set to 1 if check borders are black

nStreakDensity

Percentage of black x10 needed on a raster to make it part of a
streak 990 (99.0%) is a good value

nXPixelSize
As an input this value specifies the Speckle Width (negative or 0
defaults to 3) of image noise shapes in pixels. A good typical
value for check images is 4.

nYPixelSize
As an input this value specifies Speckle Height (negative or 0
defaults to 3) of image noise shapes in pixels. A good typical
value for check images is 5.

OUTPUTS – After a successful call to ampCheckImageQuality, these
are the result output values. The valid value ranges listed are
taken from ECCHO guidelines.

nXPixelSize

As an output this value specifies the pixel width of the image and
can be used with nXRes to calculate the horizontal width of the
check image in inches. Valid widths for front check images range
from 5.5 to 9.4 inches. The maximum acceptable width difference
between a check front and back side is 0.5 inches.

nYPixelSize
As an output this value specifies the height of the document in
pixels and can be used with nYRes to calculate the vertical height
of the check image in inches. Valid heights for front check images
range from 2.2 to 4.8 inches. The maximum acceptable height
difference between a check front and back side is 0.6 inches.

nXRes
Horizontal resolution in Dots per Inch (DPI). Dots are the same as

 pixels in this definition.

nYRes

Vertical resolution in Dots per Inch (DPI). Dots are the same as
 pixels in this definition.

dwTotalG4Length

166 Miscellaneous Functions AMPLIB-Software Developer’s Toolkit

Length in bytes of image when compressed to G4. Check front
side valid byte counts range from 414 to 130,000. Check back
side byte counts range from 414 to 100,000.

dwSpeckleCount

Number of speckle objects - default size is 3x3. Speckle density
 is calculated using this number divided by the check pixel area
 (nXPixelSize * nYPixelSize) / (nXres * nYres). Good typical
 values of speckle density for a check front side are below 42
 speckles per square inch. Back side speckle densities should be
 below 466.

dwBlobSites

Locations of blobs at edges in compass format. The lower 8 bits
in this value are each assigned a compass ordinal. If a bit value is
is nonzero, then the blob can be found in the blobloc array at an
index that matches the bit location.
North is the LSB or 1, North East is 2, East is 4, South East is 8,
South is 16, South West is 32, West is 64, and North West is 128.

dwStreakCount

Number of horizontal streaks. If this number is greater than 0, the
first 10 streak locations and sizes are listed in the streakloc array.

blobloc()
 This array of 8 structures contains the X,Y, DX, DY values
 of the blob locations in the image. Each one of these values
 is a 32-bit integer (4 bytes). The indices of this array (0-7)
 represent compass settings starting at North (0), North East (1),
 East (2), South East (3), South (4), South West (5), West (6),
 and ending at North West (7).

streakloc()

This array of 10 structures contains the X,Y, DX, DY values
 of the streak locations in the image. Each one of these values
 is a 32-bit integer (4 bytes)

dwULPeakRun

Upper left corner dominant runlength

dwURPeakRun

Upper right corner dominant runlength

dwLLPeakRun
Lower left corner dominant runlength

dwLRPeakRun
Lower right corner dominant runlength

dwPeakRunLength

Dominant runlength in image

dwRunOneCount
Number of runs of 1 pixel

dwRunTwoCount

Number of runs of 2 pixels

dwSpare1

AMPLIB-Software Developer’s Toolkit Miscellaneous Functions 167

Places double variables on 8 byte boundary

dblAvgRunLength

Average runlength (total black pixels / total number of runs)

dblBlackDensity
Average blackness of all pixels (total black / area) which must be

 less than 1.0. Acceptable darkness values for the front of a check
 image range from 2.1 to 39 percent. For check back sides

the range is from 0.0 to 39 percent.

dblTotalSkew
Skew of image as measured by the ampMicrPrep function in
degrees – Positive is CCW – a typical unacceptable skew for a
check image is 8.8 degrees or more.

dblULAvgRun

Upper left corner average runlength (black pixels / number of
runs).

dblULBlack
 Upper left corner black density (total black / area)

dblURAvgRun

Upper right corner average runlength (black pixels / number of
runs).

dblURBlack
Upper right corner black density (total black / area)

dblLLAvgRun

Lower left corner average runlength (black pixels / number of
runs).

dblLLBlack
 Lower left corner black density (total black / area)

dblLRAvgRun

Lower right corner average runlength (black pixels / number of
runs).

dblLRBlack
Lower right corner black density (total black / area)

The normal status return for successful completion of the
ampCheckImageQuality function is the value 0.

168 Miscellaneous Functions AMPLIB-Software Developer’s Toolkit

ampGetImageAddress

int ampGetImageAddress(pW, lpAddr)

PWORKIMAGE pW;
LPDWORD lpAddr;

This function is provided for special OEM use only. It returns the
bitmap image address of the image pW via the argument lpAddr.
Grayscale images are stored as an 8-bit grayscale DIB. Color images
are stored as a 32-bit DIB with the color components for each pixel
sequenced as bytes of blue, green, and red followed by an unused byte.

AMPLIB-Software Developer’s Toolkit Miscellaneous Functions 169

ampGetImageBlock

int ampGetImageBlock(pW, dx, dy, x, y, idata)

PWORKIMAGE pW;
long dx, dy;
long x, y;
WORD *idata

This function transfers a rectangular portion of image pW to the PC
memory buffer idata, which must have been previously allocated and be
large enough. Only image data from the currently defined sub-image
will be transferred. DX and DY give the number of pixels and lines,
respectively, to transfer. X and Y are relative to the image origin (0,0).

170 Miscellaneous Functions AMPLIB-Software Developer’s Toolkit

ampGetImageInfo

int ampGetImageInfo(pW, lpCtype, lpFtype,
lpBBrev)

PWORKIMAGE pW;
LPSTR lpCtype;
LPSTR lpFtype;
LPWORD lpBBrev;

This API can be called to learn certain facts about an image that was
loaded by ampLoadImage or ampLoadImageHnd.
lpCtype returns a string, as described at the top of this section, which
identifies the compression type that was used to decompress this image.
This string must be allocated by the caller, and must be large enough to
hold the type description.
lpFtype returns a string, as described at the top of this section, which
identifies the file organization type of the file that was loaded into this
image. This string must be allocated by the caller, and must be large
enough to hold the type description.
lpBBrev is a Boolean flag; TRUE means the bit-byte-reversal option
was needed to load the image.
This API always returns 0 if the function was successful, non-zero
otherwise.

AMPLIB-Software Developer’s Toolkit Miscellaneous Functions 171

ampGetLicenseInfo

void ampGetLicenseInfo(expdate, licdata)

time_t *expdate;
BOOL *licdata;

This function will return the expiration date for this machines AMPLIB
license file, and an array of 32 Boolean values, which identify which
features are licensed. A permanent(non expiring) license and no license
will return licdata of -1. The license vector for unlicensed machines
will be all False.
The current assignments match the format of the license file and are:

licdata[0] : E13B
licdata[1] : reserved
licdata[2] : Speed Class 1
licdata[3] : Speed Class 2
licdata[4] : Speed Class 3
licdata[5] : Speed Class 4
licdata[6] : Speed Class 5
licdata[7] : Image Repair
licdata[8] : MICR Verify
licdata[9] : MICR Batch
licdata[10] : MICR Parse
licdata[11] : Barcode 39
licdata[12] : Barcode 1D
licdata[13] : Barcode PDF 417
licdata[14] : AmpLib
licdata[15] : Barcode Data Matrix
licdata[16] : Mobile MICR
licdata[17] : Special bar codes (Airline, Bar Code 32)/Click
licdata[18] : XipPrint
licdata[19] : reserved
.
licdata[24] : reserved
licdata[25] : Sobel
licdata[26] : reserved

.
licdata[31] : reserved

The licensed barcode symbologies allowed under the Barcode 1D are:
BC_3of9 Code 3 of 9
BC_CODABAR CODABAR
BC_I2of5 Interleaved 2 of 5 25 limited
BC_A2of5 Airline 2 of 5 25 limited
BC_128 Code 128
BC_UCC128 UCC Code 128
BC_2of5 Code 2 of 5 25 limited

172 Miscellaneous Functions AMPLIB-Software Developer’s Toolkit

BC_MAT2of5 MAT 2 of 5 25 limited
BC_93 Code 93
BC_UPC_A UPC-A
BC_UPC_E UPC-E
BC_EAN_13 EAN-13
BC_EAN_8 EAN-8
BC_POSTNET Postnet Standalone
BC_PATCH Patch Code Standalone
BC-PLANET US Post Office code Standalone
BC_39_NOSS Code 3 of 9 without
 start/stop code Standalone
BC_BCC32 Bar Code 32 (Pharmacy) Standalone
BC_39_EXT Code 39 Extension Standalone

The licensed barcode symbologies allowed under the Barcode PDF 417

are:
BC_PDF417 PDF-417 2D code Standalone
BC_4STATE 4-State Standalone
 (US Intelligent Mail, UK Royal Post)
BC_PATCH Patch Code Standalone
The licensed barcode symbologies allowed under the Barcode Data

Matrix are:
BC_DMATRIX Data Matrix Standalone
BC_QR Quick Response Code Standalone

AMPLIB-Software Developer’s Toolkit Miscellaneous Functions 173

ampGetMessageText

void ampGetMessageText(ecode, lpMsg)

int ecode;
LPSTR lpMsg;

This function will fill a string buffer with the message text string
corresponding to the error code ecode. The string buffer should be pre-
allocated by the caller and be at least 128 bytes long.

174 Miscellaneous Functions AMPLIB-Software Developer’s Toolkit

ampGetFileVersion

void ampGetFileVersion(
szName,pnMajor1,pnMajor2,pnMinor1,
pnMinor2)

LPSTR szName;
PINT pnMajor1;
PINT pnMajor2;
PINT pnMinor1;
PINT pnMinor2;

Retrieve the amplib.dll file version information. The string will contain
the text content from the file. The four parameters contain numeric
values representing two major and two minor versioning levels. In
releases after 6.1.2.0 the pMajor2 value will be odd for single threaded
DLLS and even for multithreaded DLLs.

AMPLIB-Software Developer’s Toolkit Miscellaneous Functions 175

ampGrayGetImageBlock

int ampGrayGetImageBlock(pW, dx, dy, x, y,
pbyBlock)

PWORKIMAGE pW;
long dx, dy;
long x, y;
PBYTE pbyData

This function transfers a rectangular portion of the grayscale image pW
to the PC memory buffer pointed to by pbyData, which must have been
previously allocated and be large enough. Only image data from the
currently defined sub-image will be transferred. DX and DY give the
number of pixels and lines, respectively, to transfer. X and Y are
relative to the image origin (0,0). Color images are not supported.

176 Miscellaneous Functions AMPLIB-Software Developer’s Toolkit

ampGrayPutImageBlock

int ampGrayPutImageBlock(pW, dx, dy, x, y,
pbyData)

PWORKIMAGE pW;
long dx, dy;
long x, y;
PBYTE pbyData

This transfers a rectangular block of image data from the buffer pointed
to by pbyData on the PC to the image pW. Image data will be written to
the currently defined sub-image. DX and DY give the number of pixels
and lines, respectively, to transfer. X and Y are relative to the image
origin (0,0). Color images are not supported.

AMPLIB-Software Developer’s Toolkit Miscellaneous Functions 177

ampPutImageBlock

int ampPutImageBlock(pW, dx, dy, x, y, idata)

PWORKIMAGE pW;
long dx, dy;
long x, y;
WORD *idata

This transfers a rectangular block of image data from buffer idata on the
PC to the image pW. Image data will be written to the currently defined
sub-image. DX and DY give the number of pixels and lines,
respectively, to transfer. X and Y are relative to the image origin (0,0).

178 Miscellaneous Functions AMPLIB-Software Developer’s Toolkit

ampTrace

void ampTrace(formatstring, …)

LPSTR formatstring;
This function takes the same form as the C language printf function,
and will write a line of information to the trace log. You should include
newline character at the end of the line.
E.g.,

ampTrace(“function call returned %d\n”, rc);

AMPLIB-Software Developer’s Toolkit Miscellaneous Functions 179

ampTraceEnable

void ampTraceEnable(enabled, szFileName)

BOOL enabled;
LPSTR szFileName;

Allows programmatic enabling and disabling of the AMPLIB trace log,
which is useful in debugging. All My Papers Customer Support
personnel may request this log from you. Use of this function around an
area of code in question might make the file smaller and easier to
examine. Trace logs are not erased within AMPLIB, so it may be useful
to erase the file before debugging for the sake of clarity. There is no
real limit to the number of unique trace files that may be used in one
debugging session.

Example:
ampTraceEnable(TRUE, &szAmpTraceFile[0]);

AMPLIB-Software Developer’s Toolkit Appendix A 181

Appendix A

AMPLIB Based Application Programs

MICR BATCH
This application is available as an option. The application is written in
C++ in a Visual C++ environment. MICR BATCH will process a
complete directory of check image files and generate an ASCII text file
as output. The application provides control of the AMPLIB MICR
reader DLL in a ready to use application.

AMPTEST
This application is written in Delphi and demonstrates the use of image-
processing and MICR functions. Amptest uses the AmpLib DLLs
without the need for a license since it is an example of an OEM
program, which will run on any machine without individual licensing.

182 Appendix B AMPLIB-Software Developer’s Toolkit

Appendix B

AMPLIB Error Codes
 1 Could not allocate PC memory space. A local or global allocation failed that was

needed to complete the requested operation.
 3 Specified work image does not exist. No image by the given name can be located.
 4 Name already in use.
 6 Not a primary image. An alias image may not be used in this instance.
10 AMPLIB cannot support any more tasks. The maximum number of callers has

already been reached.
11 Internal error. A software error has been detected in the AMPLIB system. Please

report this to AllMyPapers Technical Support.
12 Image bounds exceeded. The requested DX, DY, X, Y values exceed the values

allowed for this image, as given by MaxHeight and MaxWidth, or the requested
sub-image lies outside of the current image dimensions.

13 Image metrics error. The requested sub-image lies outside of the current image
dimensions.

14 Internal error calling the Windows API.
15 Bad handle passed to function. The given handle is incorrect or inappropriate for

the function in question.
16 User interrupt. A function terminated because of an improper call.
19 AMP function call error. There is an error in the arguments passed to the function

in question.
20 No size information. The image has not yet been loaded with any image data and

thus has no dimensions.
21 No cross-board operations are allowed. You may not perform an operation where

the source and destination image operands reside on different co-processors.
22 Incompatible image sizes. When a destination image is fixed size, the result image

must be less than or equal to the size of the destination.
23 Bad file name. The file path name given is incorrect or cannot be opened.
24 I/O error. The I/O system reported an error during execution of this function.
25 Cannot open trace file.
26 An invalid compression type was given.
27 An internal TIFF operation failed. In the processing of the IFD list or header, some

critical operation failed.
28 Required TIFF tag missing. The TIFF 6.0 Specification defines those tags which at

a minimum must be present in all baseline TIFF files. One of those tags is missing.

AMPLIB-Software Developer’s Toolkit Appendix B 183

29 Image organization not supported. Only 1 bit per pixel bi-level images are
supported.

30 This system is unable to run AMPLIB. Call AllMyPapers Technical Support.
31 Unable to open the requested TIFF file. It may not be a TIFF file, or has an invalid

header.
32 The requested image within a multi-image TIFF file is not in the image file

directory of that TIFF file.
33 An error occurred while reading the TIFF IFD.
34 The KDY value given for Group 3 2d compression is invalid.
35 Assertion logic error. Some internal software data or pointer consistency has

occurred.
36 No region has been selected to support the requested operation.
37 The number passed to the function is out of range.
40 The resolution value given is not valid.
41 The page size value given is not valid.
42 The operation type is not valid.
43 The mode given is not valid.
46 The scale ratio given is not valid for this operation.
47 One of the arguments passed to the function is invalid.
48 AMPLIB is unable to create the requested file. This is most likely due to an invalid

path or some I/O permission error.
49 The margins are not legal for the page size.
51 No file specification was given and is required for this operation.
52 No index string was found in the file path name string.
53 Huge objects not supported yet.
54 The clipboard is empty.
55 General error. No detail available.
56 Download failure.
60 General printer failure.
62 A bad tag was found in a TIFF file.
64 An invalid TIFF header was detected.
65 Scaling while printing requires buffered print mode.
66 Source and destination images must be different.
67 The function in question timed out.
68 A callback function returned an error.
69 Application lockout.
70 This version of AMPLIB is not correct for this application.
71 An invalid file type was specified.
72 The image IX value must be a multiple of 32 for this operation.
73 The margins specified are not legal for this operation.
74 The requested TIFF tag already exists in the IFD list.
75 An invalid Optika header was detected.
76 The requested file format is unsupported in this mode.
83 No ensigns defined or allowed.
84 Bad MODCA RECID parameter
85 IBM MMR format not supported

184 Appendix B AMPLIB-Software Developer’s Toolkit

86 Unsupported compression type
87 Decompression error
88 Unsupported MODCA or IOCA file format
89 Compression error
90 Thread already attached to DLL
91 Disk is full
92 File Access error
93 Too many files open
94 File exists
95 Bad file handle
96 No such file or directory
98 Thread not attached
101 No object data in image block
102 Can't find a needed DLL
103 Can't find entry point in DLL
104 License file fails security check
105 License check detected date rollback
106 License expired
107 License required for this feature
108 Image degenerated to dx=0 or dy=0
113 Software implementation only
114 Not an AmpLib PDF file
115 Error parsing PDF file
116 Missing files/files not loaded
117 License computer id error
118 Problem opening license file
119 Problem opening TWAIN device
120 Problem reading paper sensor on TWAIN device
121 Scanner Timeout
122 Not supported scanner
123 No image acquired while scanning
124 Failure during image warp
125 Failure during Data Matrix read
126 Invalid JBIG header
127 JBIG decompression problem
128 Failure while rotating image
129 CLICK count exhausted
130 No image content(all black/white or nearly so)
161 Failure during Quick Response barcode read
201 Multi Thread error-- No pointer to the TLS available

AMPLIB-Software Developer’s Toolkit Appendix C 185

Appendix C

AMPLIB License Manager

Overview
AMPLIB and all applications based on it are controlled via an Internet-
connected license manager (LM). If a valid license is not detected by
AMPLIB, ampReadMICR and ampPrepMICR calls will return with
error code 107. The LM provides the tools necessary to create license
files, and to register your software and contact information with
AllMyPapers. For special needs, the AMPLIB license may also be
coded in a parallel port security key (dongle) rather than in license files.

Modes of Operation
The LM user interface is comprised of 3 panels: On-line Registration,
Off-line Registration, and Show Licenses. These 3 panels correspond to
the three modes of operation, for Internet-connected registration, off-
line registration for non-connected users or special circumstances, and
displaying the currently installed licenses.
 On-line registration, either directly or via proxy file is the preferred

method. This method uses an Internet Registration Server to
register your software and generate your license keys.

 Off-line registration is used when only voice phone or fax
communication is possible.

 Show Licenses is used to display the installed licenses on your
workstation.

On-line Registration
This panel is used to perform user registration and license key activation
through an active Internet connection on the user workstation. This can
be performed 24 hours a day, 7 days a week. To use this capability, the
user workstation must be connected to the Internet, and the user must
have a set of license key codes to register. If the Internet connection is
provided through a LAN connection, then there is no special setup. If
the workstation is connected via dial-up networking and a modem, the
connection should be made before starting the LM.
NOTE:
If you have no Internet connection, or you have a firewall or other
device that obstructs communication with the License Server, then use
the Proxy File method, discussed below.

186 Appendix C AMPLIB- Software Developer’s Toolkit

The LM On-Line Registration panel is shown below.

There are a number of fields that need to be entered.

License Keys
When you purchase licensed software, you are issued a pair of numbers
for each licensed product. (You may also receive numbers for
evaluation, which generate temporary licenses.) These numbers may be
printed on a report, shipper, or a stick on label. Below is an example of
the report form.

Date: 5/11/99 2:52:43 PM

LICENSE TYPE : AMPLIB
TIME PERIOD : Permanent
FEATURES:
 All 1-d Bar Codes
 PDF-417 2-d Bar Codes
 Image Transform
 Image Processing
 Image Filters
 LEVEL UNCHANGED

Authorization Code Product Code OEM Code
------------------ ------------------- ---------
332D-1234-1234-B629 AEB4-1234-1234-ACB2

These two numbers uniquely identify your purchase and what features
are included with your purchase. They are entered in the corresponding

AMPLIB-Software Developer’s Toolkit Appendix C 187

fields at the top of the form. If you were not issued an OEM code with
this number pair, leave that field blank.
Before you can retrieve your license key from the server, you must enter
your contact information. The first time you run this program on a
machine, the Customer ID field will come up blank.
If you have never registered before with this program, leave the
Customer ID field blank. Enter all the name and address information
requested of the program. When all fields are filled in, the [GetKey]
button will be enabled. Click it to process your license.

Note that some field length checking is performed on the contact
information fields. The following fields must have at least the given
number of characters. Pad the field with blanks or other characters if
the GetKey or SaveProxy buttons are not enabling.

FirstName > 0
LastName > 1
Company > 2
Email > 6
Phone > 9
Addr1 > 1
City > 1
State > 1
ZIP > 4

If you have previously used the program’s on-line registration to
activate a key, the Customer ID field will be filled in with your
customer number. Click the [GetKey] button to process your license.
If you think you have previously registered, but the Customer ID field
came up blank (this might be caused by re-installing Windows) , click
the [Find My ID] button to locate your customer record on the server. If
a record for your machine is found, the program will ask you to verify
your identity. If you click “yes”, your contact information and Customer
ID fields will be filled in. Then click the [GetKey] button to process
your license.
If the numbers are correctly processed, you will get a message box
stating the license key has been processed.
If you get an error stating the program timed out waiting for the server,
you may have a problem with your Internet connection. Try the
operation again, in case the server was busy or the message was lost. If
your site is protected by a firewall, ask your network administrator to
make sure UDP packets are not screened out.
If you get an error message stating the keys could not be processed,
double check they are entered correctly, and click [GetKey] again after
correcting them. For problems you cannot solve, call Customer
Support.

Changing Your Address
If you are already registered, but want to record a new address or phone
number with the registration server, click the [Change Address] button.

188 Appendix C AMPLIB- Software Developer’s Toolkit

This will enable your address information for editing. Make your
changes and then click [Submit].

Proxy Files
If your workstation is not connected to the Internet, but you have access
to another that is, you can “register by proxy.” If you have a firewall,
proxy server or other packet filtering device installed that obstructs
communication with the License Server, you can also use the Proxy File
method to perform your registration.
(Note that the [Save Proxy File] button, just like the [GetKey] button,
are not enabled until all the required fields have been entered.)
With Proxy files, you enter the registration data and license codes as
you normally would, but instead of clicking [GetKey], you click the
[Save Proxy File…] button. This command will save information
needed for registering your software to a file, perhaps on a floppy disk.
Next, take that file to another workstation that is connected to the
Internet, and has LM installed on it. Go to the On-line registration panel
and click the [Load Proxy File…] button. This will cause the LM to
communicate with the server to retrieve the activation key. If it is
successful, the proxy file will be updated with this key information.
If you have no such workstation that can perform the Proxy file load, e-
mail the proxy file to Customer Support. They will process the file and
return it to you.

Now, return to the workstation to be licensed, and click [Load Proxy
File…], this time using the file that was updated by the other machine.
This action will then install the license on your workstation. Your
registration information will have been sent to the server by the other
machine.

Site License Administrator
If your site has more than one machine to license, you can speed up the
process by entering the same Customer ID number for each machine.
Once you have been issued an ID by the first registration process,
remember that ID and use it for each other machine. That will establish
one owner for all the machines recorded on the server, and reduce the
typing needed for each machine.

Off-Line Registration
When no Internet connection is available, or when special
circumstances dictate, you can contact Customer Support. They will
direct you to the Off-line Registration panel, shown below.

AMPLIB-Software Developer’s Toolkit Appendix C 189

You might be asked to use this form if:
 You set the PC’s date/time backward beyond the time you last ran a

licensed application.
 You change your machine configuration such that your Computer

ID changes and your license becomes invalidated.
 You have requested an extension of a temporary license.
(Alternatively, Customer Support might issue you a new Authorization
Code pair to accomplish the same thing.)
There is only one entry field on this form. You will be asked for your
Workstation Information, shown at the top of the form. Customer
Support will then give you an Activation Key to enter. After you type it,
click the [ENTER] button to process it. A message box will indicate
either success or failure.

If you cannot be in a real-time phone conversation with Customer
Support, write down the Computer I.D. and Code Entry number, and
click [Delay Entry]. This will record session information to be used
again next time you run the program. Communicate these numbers via
phone, fax, e-mail, or whatever to Customer Support along with your
request. They will then respond with an Activation Key. Re-start the
program, return to this panel, and enter the Activation Key. Click
[ENTER] to process it.

If you decide later that you do not wish to proceed with this “delayed”
action, click the [Clear Delayed Code] button to return to a normal state.

Show Licenses
This panel displays the licenses that are installed in the machine. A
sample screen is shown below.

190 Appendix C AMPLIB- Software Developer’s Toolkit

The left pane displays each of the licenses that are present on the
machine. As the licenses in the left pane are selected with the mouse or
keyboard, the right pane shows what features are coded in that license
and the expiration date.
Note there are three types of licenses that may be shown in the left pane.
1. Permanent Licenses
2. Temporary Licenses, shown as (temp)
3. OEM licenses, shown as (OEM file)
It is possible to have multiple types for the same product. When this is
the case, they OR together in function.

OEM Licenses
OEM license files are stored in the \Windows\AMP\Licenses folder.
They generally have the form “SIPC00nn”. These are only issued by
special contract.
See Tech Bulletin 004 for information on using OEM licenses.

AMPLIB- Software Developer’s Toolkit Appendix D 191

Appendix D

What is MICR?

Overview
Originally developed in the 1950s to allow computers to sort checks,
MICR (Magnetic Ink Character Recognition) is a special type font
designed to be machine readable.

The font most commonly used in the United States, Canada, U.K.,
Australia, Turkey, India, Mexico, Venezuela, Columbia and the Far East
is called E-13B.

The “E” in E-13B means that this was the fifth font considered. The
“13” means that the height, width, and stroke widths of each character
are either 0.013” or a multiple of 0.013”. The “B” means that this was
the second revision of the font.

The E-13B font includes the numbers 0 through 9, plus four special
symbols: the Amount, the On Us, the Routing and Transit, and the
Dash.

There is another standard, called CMC7, which is used in France, Italy,
Spain, other Mediterranean countries, and South America (except
Venezuela and Columbia). This font set has 41 characters and is
distinguished by the vertical bars within each character.

Special magnetic MICR readers used to be necessary to decode the
characters, which were printed with special toner containing iron oxide.
This technology was built on the existing knowledge of the time
regarding magnetic tape reading.

The drawbacks to the magnetic system included the expense of setting
up special MICR printers to imprint the checks, and the expense of
buying complicated MICR readers to decode the magnetic signals. The
magnetic readers were also easily confused by extraneous information
that might overlap the characters, such as a long descenders on a
customer’s signature. Variations in the amount of iron oxide in the ink,
inconsistencies in how it was laid on the paper, and differences in paper
quality all can lower the accuracy of magnetic MICR readers.

192 Appendix D AMPLIB Software Developer’s Toolkit

Now, using the OCR technology available with the AMPLIB System,
MICR characters can be printed with ordinary ink, and be recognized
quickly and reliably, even in circumstances that would confound a
magnetic reader.

MICR Character Set

The MICR characters are always printed on the bottom portion of
checks, drafts, and other negotiable documents, in an area 5/8” from the
bottom edge, called the “Clear Band.”

Starting at the right, the first field is called the Amount. This field is
filled in by the bank of first deposit, and is always bracketed by the
Amount Symbol.

To the left of this is the On Us field, normally containing the account
number at the drawee bank. It may also contain the sequential check
number.

Next toward the left is the Routing and Transit field, containing the
check digit number, the drawee bank number, and the bank routing
number. This field is always bracketed by the Transit Symbol.

Last on the left is the Auxiliary On Us field. On business checks it may
contain the check serial number, as well as accounting control
information specific to the account. This field is always bracketed by
the On Us Symbol.

AMPLIB Software Developer’s Toolkit Appendix E 193

Appendix E

Bar Code Symbology Examples

Code 39 (3 of 9)

0 1 2 3 4 5 6 7

Code 39, also referred to as Code 3 of 9, is an alphanumeric, self-
checking, variable length code that uses five black bars and four spaces
to define a character. Three of the elements are wide and six are narrow.
Code 39 supports the following characters:
 26 uppercase letters
 Ten digits
 Seven special characters (- . $ / + % and a space)
 Start/stop character (*)
 A Code 39 bar code consists of the following elements:
 Leading quiet zone
 Start character
 Data characters, with characters separated by an intercharacter gap
 Optional check character
 Stop character
 Trailing quiet zone

194 Appendix E AMPLIB- Software Developer’s Toolkit

Discrete 2 of 5

0 1 2 3 4 5 6 7

Discrete 2 of 5 is a variable length, high-density, self-checking, numeric
code that uses five black bars to define a character. Two of the bars are
wide and three are narrow.
Each Linear 2 of 5 bar code consists of the following elements:
 Leading quiet zone
 Start character
 Data characters
 Optional check character
 Stop character
 Trailing quiet zone

Note: Interleaved 2 of 5 and Linear 2 of 5 bar codes are mutually
incompatible. You cannot select both of these bar types together when
specifying multiple bar code types.

AMPLIB Software Developer’s Toolkit Appendix E 195

Interleaved 2 of 5

0 1 2 3 4 5 6 7

Interleaved 2 of 5 is a variable length (must be a multiple of two), high-
density, self-checking, numeric code that uses five black bars and five
white bars to define a character. Two digits are encoded in every
character; one in the black bars and one in the white bars. Two of the
black bars and two of the white bars are wide. The other bars are
narrow.
Each Interleaved 2 of 5 bar code contains an even number of characters,
and consists of the following elements:
 Leading quiet zone
 Start character
 Data characters
 Optional check character
 Stop character
 Trailing quiet zone
Note that in some cases, text or other random patterns on an image can
inadvertently be detected as Interleaved 2 of 5 bar codes. To avoid this,
you should always use a check digit and set the minimum number of
characters as large as possible.

196 Appendix E AMPLIB- Software Developer’s Toolkit

CODABAR

A 0 1 2 3 4 5 6 7 B

Codabar is a self-checking, variable length bar code that can encode 16
data characters. It is used primarily for numeric data, but also encodes
six special characters. Codabar is useful for encoding dollar and
mathematical figures because a decimal point, plus sign, and minus sign
can be encoded.
Codabar supports the following characters:
 Ten digits
 Six special characters ($: / . + -)
 Four different start/stop codes (A - D)
 A Codabar bar code consists of the following elements:
 Leading quiet zone
 Start character
 Data characters
 Stop character
 Trailing quiet zone
Codabar supports three character encoding schemes:
Ten digits (0-9) and the special characters $ and - (minus) are printed
with one wide bar and one wide space. All other elements are narrow.
Four special characters (: / . +) are encoded with three wide bars and no
wide spaces.
Four start/stop characters (a b c d) are encoded with one wide bar and
two wide spaces.

AMPLIB Software Developer’s Toolkit Appendix E 197

UPC-A

0 1 2 3 4 5 6 7 8 9 0 5

The Universal Product Code (UPC) bar code version A is a fixed length
(12 characters) bar code scheme designed to uniquely identify a product
and its manufacturer. The first digit in a UPC-A symbol is the number
system digit, the next ten digits are data characters, and the last digit is
the checksum. This is the standard bar code scheme for items of sale to
the public. Note that supplementals are not supported.
A UPC-A bar code consists of the following elements:
 Left guard pattern
 Number system digit (encoded in odd parity)
 Manufacturer’s code (encoded in odd parity)
 Center guard pattern
 Product code (encoded in even parity)
 Check digit (encoded in even parity)
 Right guard pattern
UPC-A uses a different coding scheme for the first half of a symbol
(number system digit and manufacturer’s code) and the second half of a
symbol (product code and check digit). The left half uses the odd parity
encodations of digits and the right half uses the even parity encodation
digits.

Note: UPC-A and EAN bar codes are mutually incompatible. You
cannot select both of these bar code types at the same time.

198 Appendix E AMPLIB- Software Developer’s Toolkit

UPC-E

0 0 1 2 3 4 5 7
The Universal Product Code (UPC) bar code version E is a zero-
suppressed version of UPC-A. This version compresses the data
characters and the checksum into six characters. Only tags with a
number system character of zero can be encoded into UPC-E. In
addition, the original ten data characters must have at least four zeros.
Note that supplementals are not supported.
A UPC-E bar code consists of the following:
 Left guard pattern
 Data characters
 Compression type digit
 Right guard pattern

AMPLIB Software Developer’s Toolkit Appendix E 199

EAN-8 and EAN-13

0 1 2 3 4 5 6 7 8 9 0 1 2 0 1 2 3 4 5 6 5
The European Article Numbering (EAN) system is used for products
that require a country origin. This is a fixed-length code used to encode
either eight or thirteen characters. The first two characters identify the
country of origin, the next characters are data characters, and the last
character is the checksum. The EAN character set is a superset of the
UPC-A character set. Note that supplementals are not supported.
An EAN bar code consists of the following:
 Left guard pattern
 Odd parity digits
 Center guard pattern
 Even parity digits
 Mandatory check digit
 Right guard pattern
Note: UPC-A and EAN bar codes are mutually incompatible. You
cannot select both types of codes at the same time.

200 Appendix E AMPLIB- Software Developer’s Toolkit

Code 93

 0 1 2 3 4 5 6 7 8
Code 93 is a variable length bar code that encodes 47 characters. It is
named Code 93 because every character is constructed from nine
elements arranged into three bars with their adjacent spaces. Code 93 is
a compressed version of Code 39 and was designed to complement
Code 39.
Code 93 supports the following characters:
 26 uppercase letters
 Ten digits
 Seven special characters (- . $ / + % and a space)
 Four special precedence characters ($, %, /, +)
 Start / stop character

A Code 93 bar code consists of the following elements:
 Leading quiet zone
 Start character
 Data characters
 First check character (referred to as C)
 Second check character (referred to as K)
 Stop character
 Termination bar
 Trailing quiet zone

AMPLIB Software Developer’s Toolkit Appendix E 201

Code 128

0 1 2 3 4 5 6 7 8

Code 128 is an alphanumeric, very high-density, compact, variable
length bar code scheme that can encode the full 128 ASCII character
set. Each character is represented by three bars and three spaces totaling
11 modules. Each bar or space is one, two, three, or four modules wide
with the total number of modules representing bars an even number and
the total number of modules representing a space an odd number. Three
different start characters are used to select one of three character sets.
Code 128 supports 107 unique characters, including:
 Four function characters
 Four code set selection characters
 Three start characters

A Code 128 bar code consists of the following elements:
 Leading quiet zone
 Start character
 Data characters
 Mandatory check character
 Stop character
 Termination bar
 Trailing quiet zone

202 Appendix E AMPLIB- Software Developer’s Toolkit

UCC 128

0 1 2 3 4 5 6 7 8

The EAN/UCC 128 symbology is a variation of the original Code 128
symbology designed primarily for use in product identification
applications.
The EAN/UCC 128 specification uses the same code set as Code 128
except that it does not allow function codes FNC2-FNC4 to be used in a
symbol and FNC1 is used as part of the start code in the symbol. The
check digit in EAN/UCC128 symbols is also calculated differently than
in Code 128.

AMPLIB Software Developer’s Toolkit Appendix E 203

Postnet

The Postnet (Postal Numeric Encoding Technique) is a fixed length
symbology (5, 6, 9, or 11 characters) which uses constant bar and space
width. Information is encoded by varying the bar height between the
two values. Postnet codes are placed on the lower right of envelopes or
postcards, and are used to expedite the processing of mail with
automatic equipment and provide reduced postage rates.
A Postnet code consists of the following elements:
A tall start bar.
Data digits consisting of groups of five bars for each digit to be
encoded. Each digit contains two tall bars and three short bars.
A five bar check character. The value of the check digit is chosen such
that the sum of all data digits and the check character is an integral
multiple of ten.
A tall stop bar.
Note: Postnet cannot be used in combination with any other bar code
type when specifying multiple bar code types.

204 Appendix E AMPLIB- Software Developer’s Toolkit

 4-State Barcodes

The 4-State Barcodes are a family of symbologies which use 3-segment
bars of fixed width and spacing. Two bits of data are encoded in each
bar by varying the presence of the top and bottom segments, creating
one of the 4 possible bar states. 4-State Barcodes are typically printed
on mail to record address and internal postal routing information.
The different 4-State Barcode symbologies have differing lengths and
data capacities. AMPLIB supports three 4-State Barcode formats:

 the US Postal Service 4-State Customer Barcode or ‘ONECode
Solution’ barcode

 the Denmark Post Intelligent Barcode
 the Australia Post 4-State Customer Barcode

The US Postal Service 4-State Customer Barcode consists of 65 bars
and can record up to 31 single-digit numbers. It includes a CRC code to
allow error detection.
The Denmark Post Intelligent Barcode consists of 66 bars and can
record up to 31 single-digit numbers. It includes Reed-Solomon error
correction that allows complete data recovery from some damaged
barcodes. Any 4 missing bars (and possibly up to 12 missing bars) can
be recovered, and any 2 incorrect bars (and possibly up to 6 incorrect
bars) can be recovered.
The Australia Post 4-State Customer Barcode is of variable length and
can consist of 37, 52, or 67 bars. Each of these barcode lengths has a
base payload of 8 single-digit numbers. In addition to this, codes with
52 bars can contain 8 more single-digit numbers or 5 alphanumeric
characters, and codes with 67 bars can contain 15 more single-digit
numbers or 10 alphanumeric characters. Regardless of length, each of
these codes contain Reed-Solomon error correction symbols that allow
complete data recovery despite some amounts of damage. Any 4
missing bars (and possibly up to 12 missing bars) can be recovered, and
any 2 incorrect bars (and possibly up to 6 incorrect bars) can be
recovered.

AMPLIB Software Developer’s Toolkit Appendix E 205

Reading Postal Codes
Four(4) State Barcodes (FSB) are atypical in that the information
content is in the vertical height of the bars and not the horizontal width.
Each bar can have 4 different values and most of the codes will use a
group of 4 bars to provide up to 64 different characters.
The All My Papers AmpLib engine with FSB barcode type will read
Four State Barcodes and auto decode based on the number of bars in the
code (see the table).
The national mail codes have bar height and spacing information
provided as part of the definition. This is critical information and the
resolution parameter in the image must be correct for accurate reads.
Depending on what the country specification expects, some codes will
not present all of the information available.
Royal Mail is a good example where there multiple versions that may or
may not present the mail sub codes. In the case of Royal Mail, the check
sum is not presented.
The US One Code is a case that will have the same number of bars in
each code but different amounts of data.
Each country will have a range of skew that can be processed and the
AMP FSB decoder follows those ranges. This value is usually far less
than the general AMP barcode decodes.

Code ECC Check

Sum
Bars Start/Stop Comments/Sub

Codes
US One Code/
Intelligent Mail

Yes No 65 Yes Single code length with
many different length
results.

Royal Mail No Yes 38, 42 Yes

Royal Dutch No Not
Calcu-
lated

32,44 No

Singapore No Yes 30 Yes

Australian Post Yes No 37,
52, 67

 Sub codes -- default is C
table.
Consult AMP Support for
other tables.

Canadian Post

Yes No 52 Yes Decode algorithm not in
public domain--not
decoded.

Most Bar Code Generators using Fonts will have an option to put
annotation above or below the barcode. This may violate the spacing
values on a mail piece. So test images should not have the value
annotation if it does (see table for clear space value).
There are three basic levels of authentication in the codes (high, middle,
low). An Error Correction Code (ECC) provides a high level. A check
sum with character validation provides a middle level of authentication.
Character validation without a checksum provides a low level of
authentication. Neither the ECC characters nor the checksum characters
are output for the reader.

206 Appendix E AMPLIB- Software Developer’s Toolkit

Warning: The AMP FSB decoder is for the specific country mail codes
and is not intended as a general purpose reader for arbitrary encoding of
the code.

Code Typical

Full
Bar
Height

Typical
Bars
per
Inch

Min
Clear
Space
Above/
Below

Authentication

US One Code/
Intelligent Mail

0.18 –
0.25 inch

24 0.08 inch High--ECC

Royal Mail Middle--Check Sum

Royal Dutch Low

Singapore Middle—Check Sum

AMPLIB Software Developer’s Toolkit Appendix E 207

PDF-417

PDF417 is a high-density 2 dimensional bar code symbology that
essentially consists of a stacked set of smaller bar codes. The
symbology is capable of encoding the entire (255 character) ASCII set.
PDF stands for "Portable Data File" because it can encode as many as
2725 data characters in a single bar code.
The complete specification for PDF417 provides many encoding
options including data compression options, error detection and
correction options, and variable size and aspect ratio symbols. The
symbology was published by Symbol Technologies to fulfill the need
for higher density bar codes.
The low level structure of a PDF417 symbol consists of an array of code
words (small bar and space patterns) that are grouped together and
stacked on top of each other to produce the complete printed symbol.
An individual code word consists of a bar and space pattern 17 modules
wide. The user may specify the module width, the module height, and
the overall aspect ratio (overall height to width ratio) for the complete
symbol. A complete PDF417 symbol consists of at least 3 rows of up to
30 code words and may contain up to 90 code word rows per symbol
with a maximum of 928 code words per symbol.
The code words in a PDF417 symbol are generated using one of three
data compression modes currently defined in the symbology
specifications. This allows more than one character to be encoded into a
single data code word. Because different data compression algorithms
may be used, it is possible for different printed symbols to be created
from same input data.
The symbology also allows for varying degrees of data security or error
correction and detection. Nine different security levels are available
with each higher level adding additional overhead to the printed symbol.

Data Matrix

208 Appendix E AMPLIB- Software Developer’s Toolkit

Data Matrix is a high-density 2 dimensional bar code symbology which
is made up of square modules arranged within a perimeter finder
pattern. Although the formal specification allows dark symbols on light
backgrounds as well as light symbols on dark background, AMPLIB
supports only the former (as shown above). The symbology is capable
of encoding the entire (255 character) ASCII set in a variety of internal
formats. The largest symbol can encode as many as 3116 numeric
characters.
The complete specification for Data Matrix provides many encoding
options including data compression options, error detection and
correction options, and variable size and aspect ratio symbols. AIM
International, Inc. publishes a document entitled "International
Symbology Specification-Data Matrix." AMPLIB supports only the
symbols denoted as ECC 200 in this document.
Each Data Matrix symbol consists of data regions made up of an array
of code words. Larger symbols consist of multiple data regions
separated by alignment patterns. The finder pattern that surrounds a
data region consists of an L shape in the lower left corner and
alternating white-black squares on the top and right sides. The number
of black and white squares on the top and right determine the overall
size of the symbol. The symbol shown above has 18 rows and 18
columns with the single data region being 16x16. A quiet zone of white
space surrounds each symbol. Square symbols can have 1, 4, 16, or 36
individual data regions. Square symbols with 1 data region range in
size from 10x10 to 26x26. Square symbols with 4 data regions range in
size from 32x32 to 52x52. AMPLIB supports square symbols with up to
52 elements on a side.
The code words in a Data Matrix symbol are generated using one of six
data compression modes defined in the symbology specification. This
allows more than one character to be encoded into a single data code
word. Because different data compression algorithms may be used, it is
possible for different printed symbols to be created from same input
data.
The symbology uses error correction and detection to allow for the
efficient recovery of data from degraded symbols. AMPLIB will only
report back data from a symbol if the error correction codes have been
correctly processed. This corresponds to a Confidence of 30-100%. A
Confidence of 20% means there were too many errors to be corrected.
10% Confidence means that a potential symbol's alignment pattern was
found, but that the error correction codes within the data region were
heavily degraded and unusable.
Grayscale or bilevel representations of Data Matrix are supported by
AMPLIB. If the data and alignment elements are small (3-5 pixels),
grayscale images will give superior recognition performance. Grayscale
images should always be of good contrast with a median value of about
128. The AMPLIB ampGrayProcesses routine can be used to optimize
grayscale images prior to recognition. Symbols may be upside down
and still be recognized correctly (although at a somewhat reduced rate).
Symbols with an overall skew less than 20 degrees will read with
greater accuracy.

AMPLIB Software Developer’s Toolkit Appendix E 209

Quick Response (QR)

QR is a 2-dimensional barcode symbology consisting of light and dark
square modules arranged in a square grid pattern of varying size. The
modules of a QR code represent payload data, barcode format
information, Reed-Solomon error correction data, and patterns to
facilitate acquisition and orientation by scanners.
Supported barcode sizes range from 21x21 modules to 177x177
modules. These sizes are evenly spaced in 4 module steps across this
range (21x21, 25x25, 29x29, etc).
QR has a subformat called MicroQR which allows four small barcode
sizes (11x11, 13x13, 15x15, 17x17). These have a single finder square
symbol in their top-left corner and are encoded and decoded differently
from normal QR codes.
QR codes contain finder square symbols in their top-left, top-right, and
bottom-left corners. Additionally, they contain smaller orientation
square symbols arranged on a grid throughout the pattern to facilitate
grid determination by scanners.
QR codes can contain numeric data, alphanumeric data, raw data bytes,
and kanji characters. QR codes are able to switch between different data
types in the same code.
QR codes use Reed-Solomon error correction with user-selectable
redundancy levels. Low, Medium, Quartile, and High levels are
available, providing recovery from the loss of approximately 7%, 15%,
25%, and 30% of the data area of the code, respectively.
The largest QR code (177x177) with the Low Reed-Solomon level can
contain up to 7089 numeric characters, 4296 alphanumeric characters,
2953 bytes of raw data, or 1817 kanji characters.

AMPLIB Software Developer’s Toolkit Appendix E 211

AMPLIB Software Developer’s Toolkit Appendix E 213

AMPLIB Software Developer’s Toolkit Appendix E 215

AMPLIB Software Developer’s Toolkit Glossary 217

Glossary

Glossary of Terms

ABA
American Bankers Association; an association that provides, among
many things, the check format specification for the United States. Each
country will have its own organization and format specification.

AIM
Automatic Identification Manufacturers; an association that develops
bar code specification standards.

Alias Image
An alias image is a named image structure that describes a sub-image
area of a work image, but does not have any storage allocated; it simply
points into the base workimage it is derived from.

API
API stands for Applications Programming Interface, and refers to a
package of procedure and function calls to implement a set of related
functions. AMPLIB includes an API, callable from REXX, C, Visual
Basic, and any other DLL-compatible language.

DLL
Dynamic Link Library. A type of executable module that can be linked
with an application at run time. AMPLIB is implemented as a DLL.

Download
The process of transferring files or data from another computer into
your own.

DX
The term used to describe the width in pixels of a sub-image. All image
operations act on the active sub-image, rather than the entire work
image.

DY
The term used to describe the height in lines of a sub-image. All image
operations act on the active sub-image, rather than the entire work
image.

218 Glossary AMPLIB- Software Developer’s Toolkit

Fixed Size Work Image
A work image with a fixed allocation of memory; the amount of storage
does not shrink or grow with use. Primarily used for tiled image
operations. Scanner images and printer images are also in this category.

Height
Height of an image refers to the number of lines in the work image. This
is not necessarily the same as the active sub-image height (see DY).

Job
In scanning terminology, a job refers to a group of documents delimited
by job separator sheets.

MICR
Magnetic Ink Character Recognition. See Appendix D (p.80) for more
information.

Microsoft Windows
The Microsoft Windows Operating System, which is required to run
AMPLIB. Windows 95 or higher is needed.

OCR
Optical Character Recognition detects the amount of light reflected from
a printed character to identify that character.

Page orientation
Documents may be scanned either in portrait mode, where the height is
greater than the width, or landscape mode, where the width is greater
than the height.

Page size
Term used to identify the physical size of a document to be scanned or
printed. Page size is given as a string identifier, such as "letter", "legal",
"a4", etc.

Pitch
Term used for width of a work image, in pixels. This is a distance
between pixels on adjacent lines, and not necessarily the active sub-
image area width (see DX).

Sub-Image
Every work image has an active sub-image area, defined by the image
metrics X, Y, DX, and DY. (X,Y) give the pixel offset from the upper
left corner of the work image; (DX, DY) give the width and height of
the sub-image area.

Variable Size Work Image
A work image that has a variable amount of storage allocated for it.
Variable size work images shrink and grow as they are used to match
the size of the image data written to them.

AMPLIB Software Developer’s Toolkit Glossary 219

Width
The width of an image defines the number of pixels across a line of the
image. The width of an image will always be less than or equal to the
image pitch.

Work Image
A rectangular block of storage maintained by AMPLIB to hold image
data.

AMPLIB- Software Developer’s Toolkit Index 221

Index

2
2 of 5 200

A
AIM, definition 223
Alias image 20, 33, 35, 184
Alias image metrics 33
Alias image, definition 223
ampAnalyzeResolutionEx 53
ampAnalyzeTagBuffer 107
ampAnnotateImage 129
ampBitBltImage 132
ampClearImage 133
ampConvertImage 134
ampCopyImage 20, 135
ampCreateColorWorkImage 31
ampCreateDIB 108
ampCreateDIBSection 109
ampCreateGrayWorkImage 29
ampCreateImageAlias 33
ampCreateWorkImage 18, 27
ampDeBorder 154
ampDeLine 155
ampDeShade 157
ampDeSkew 136
ampDeSpec 159
ampDeStreak 161
ampDitherImage 138
ampFieldVerifyEx 55
ampFillImage 139
ampFilterImage 163
ampFormatMICRFields 54, 55,

58
ampFreeAllImages 21, 27, 34
ampFreeImage 35
ampGetBarCodeData 92
ampGetImageAddress 168, 170
ampGetImageBlock 171
ampGetImageInfo 172
ampGetImageMetrics 36, 37,

44, 69, 70, 72, 74, 76
ampGetImageResolution 38
ampGetLicenseInfo 173
ampGetMessageText 175
ampGetRunsInfo 39
ampGrayGetImageBlock 177
ampGrayMirrorImage 140
ampGrayProcesses 141
ampGrayPutImageBlock 178
ampGrayScaleResolution 143
ampInvertImage 144
AMPLIB API 23
AMPLIB Components 11

AMPLIB Error Codes 184
AMPLIB Goals 7
AMPLIB License Manager 189
AMPLIB Programming 13
ampLoadClipboard 110
ampLoadDIB 111
ampLoadDIBHandle 112
ampLoadDIBSectionHandle

113
ampLoadImage 111, 112, 114
ampLoadImageBuffer 119
ampLoadImageHnd 118
ampMICRINFO 64, 102
ampMirrorImage 145
ampOutsideFillImage 126, 146
ampParseMicr 60
ampPREPINFO 61
ampPrepMicr 61, 63
ampPutImageBlock 179
ampReadBarCodes 94
ampReadCamera 70, 74
ampReadCameraRear 72
ampReadMicr 64, 66, 67, 102
ampReadMicrCamera 69, 76
ampReadMicrRepair 68
ampReadScannerForChecks 74
ampRECT structure 26
ampRotateImage 147
ampSaveClipboard 120
ampSaveImage 121, 123, 125
ampSaveImageHnd 125
ampScaleImage 148
ampSetImageMargins 126
ampSetImageMetrics 19, 27,

29, 31, 40
ampSetImageResolution 38, 41
ampSetInputImageMetrics 115,

127
ampThresholdImage 150, 151
ampTrace 180
ampTraceEnable 181
ampVoteIRDRepair 77
ampVoteIRDRetry 79
ampVoteMicrRepair 80
ampVoteMicrRetry 81
AnnotateImage 129
API Description 26
API, definition 223
APIDEMO 183
Appendix A—Sample

AMPLIB Programs 183
Appendix B—AMPLIB Error

Codes 184
Appendix C—AMPLIB

License Manager 189
Appendix D—What is MICR?

197
Applications Programming

Interface (API) 22
ASCII codes 64, 66, 67, 102

B
Bar Code Reading 83
bar code search order 89
Bar Code Symbology

Examples 199

222 Index AMPLIB- Software Developer’s Toolkit

2 of 5 200
Codabar 202
Code 128 207
Code 39 199
Code 93 206
Data Matrix 214
EAN 205
Interleaved 2 of 5 201
PDF-417 213
PostNet 209
Quick Response 216
UCC 128 208
UPC-A 203
UPC-E 204
US Postal Service 4-State

Customer Barcode 210
BASIC Programming 13
Bit block transfer

BitBltImage 132
Bit order 105
BitBltImage 132
Bitmap files 112
Bi-tonal images, scaling 148
Build process 22

C
C/C++ Programming 13
C++ compiles 22
Changing Your Address 192
ClearImage 133
Codabar 202
Code 128 207
Code 3 of 9 199
Code 39 199
Code 93 206
Code Examples 14
Color and Grayscale Images 18
Compiling and linking 21
Components, AMPLIB 11
Compression types supported

105
ConvertImage 134
CopyImage 135
CreateColorWorkImage 31
CreateDIB 108
CreateDIBSection 109
CreateGrayWorkImage 29
CreateImageAlias 33
CreateWorkImage 27

D
Data Matrix 214
Delphi 13, 183
DeSkew 136
Discrete 2 of 5 200
DitherImage 138
DLL 9
DLL, definition 223
Download, definition 223
DX, definition 223
DY, definition 224

Dynamic Link Libraries 9

E
EAN 205
Error Codes 184

F
Fields, MICR 198

Amount 198
Auxiliary On Us 198
Clear Band 198
On Us 198
Routing and Transit 198

File Functions 24, 105
File name extensions

recognized 114
File organizations supported

105
Fill order 105
FillImage 139
Fixed size work image 27, 29,

31
Fixed size work image,

definition 224
FreeAllImages 21, 27, 34
FreeImage 35

G
GetBarCodeData 92
GetImageAddress 168, 170
GetImageBlock 171
GetImageInfo 172
GetImageMetrics 36, 37, 44,

69, 70, 72, 74, 76
GetImageResolution 38
GetLicenseInfo 173
GetMessageText 175
GetRunsInfo 39
Glossary 223
GrayGetImageBlock 177
GrayMirrorImage 140
GrayProcesses 141
GrayPutImageBlock 178
GrayScaleResolution 143

H
Hardware

Installation 9
Height of image 18, 40
Height, definition 224
Help Engine 11

I
Image 20
Image Filtering Functions 153
Image Management Functions

23, 27

AMPLIB- Software Developer’s Toolkit Index 223

Image Manipulation Functions
24, 25, 128

Image processing options,
during load 114

Image resolution 38, 41
Image storage 18
Incompatible Bar Codes 200,

203, 205, 209
Installation 9
Interleaved 2 of 5 201
Introduction 7
InvertImage 144

J
Job, definition 224

L
License Keys 190
License Manager, AMPLIB

189
Licenses, OEM 195
Licenses, Show 194
Linear 2 of 5 200
Linking 21
LoadClipboard 110
LoadDIB 111
LoadDIBHandle 112
LoadDIBSectionHandle 113
LoadImage 111, 112, 114
LoadImageBuffer 119
LoadImageHnd 118

M
Memory management 7
MICR Fields 198

Amount 198
Auxiliary On Us 198
Clear Band 198
On Us 198
Routing and Transit 198

MICR Functions 23, 24, 43, 96
MICR Parameters 45, 83, 84,

86, 96
bestchar 46, 97
Code 49, 99
Do180 47, 98
Done180 47, 98
DoneRepair 47, 98
Dorepair 47, 98
Filter 48, 99
infile 46
Input values 49, 99
lastchar 46, 97
MinCon 50, 100
NoBlanks 49, 99
NoRules 49, 100
outfile 46
percent 46, 97
Resolution 49, 99
resultchar 46, 97
Rules 49, 100
translator 46, 97
UseTranslator 49, 100

MICR Translation Table 46, 97

MICR, and the AMPLIB
system 7, 8

MICR, character set 198
MICR, definition 224
MICR, What is 197
MICRDEMO 183
MICRDEMO application 183
MICRINFO 64, 102
MirrorImage 145
Miscellaneous Functions 25,

167

O
OCR 7
OCR, definition 224
OEM Licenses 195
Off-Line Registration 193
On-line Registration 189
OutsideFillImage 146

P
Page orientation, definition 224
Page size, definition 224
Parameters, MICR 45, 83, 84,

86, 96
bestchar 46, 97
Code 49, 99
Do180 47, 98
Done180 47, 98
DoneRepair 47, 98
Dorepair 47, 98
Filter 48, 99
infile 46
Input values 49, 99
lastchar 46, 97
MinCon 50, 100
NoBlanks 49, 99
NoRules 49, 100
outfile 46
percent 46, 97
Resolution 49, 99
resultchar 46, 97
Rules 49, 100
translator 46, 97
UseTranslator 49, 100

PATH 11
PDF-417 213
Pitch of image 18, 40
Pitch, definition 224
PostNet 209
PREPINFO 61
PrepMicr 61, 63
Programming

AMPLIB Programming 13
C/C++ Programming 13
Delphi 13
Visual BASIC 13

Proxy Files 192
PutImageBlock 179

Q
Quick Response 216
Quick Start 14

224 Index AMPLIB- Software Developer’s Toolkit

R
ReadBarCodes 94
ReadMicr 64, 66, 67, 102
ReadMicrRepair 68
Region of interest

Sub-Image 20, 28, 29, 31,
146

Registration, by proxy 192
Registration, Off-line 193
Registration, On-line 189
Resolution 41
RotateImage 147

S
Sample AMPLIB Programs

183
SaveClipboard 120
ScaleImage 148
Scaling

ScaleImage 148
SetImageMargins 126
SetImageMetrics 27, 29, 31, 40
SetImageResolution 38, 41
SetInputImageMetrics 115, 127
Show Licenses 194
Site License Administrator 193
Software

Installation 9
Software Installation Process 9
Sub-image metrics 33
Sub-image, definition 225
Sub-images 19, 20, 26, 27, 28,

29, 31, 33, 146
Summary of AMPLIB APIs 23
symbologies 86
System Requirements 9

T
ThresholdImage 150, 151
Tiling 28, 29, 31
Trace 180
TraceEnable 181
Translation Table 46, 97

U
UCC 128 208
UPC-A 203
UPC-E 204
US Postal Service 4-State

Customer Barcode 210

V
Variable size images 27, 29, 31
Variable size work image 20,

33, 126
Variable size work image,

definition 225
VoteIRDRepair 77

VoteIRDRetry 79
VoteMicrRepair 80
VoteMicrRetry 81

W
Width, definition 225
WM_CLOSE 21
Work image, definition 225
Work Images 18, 27

Fixed Size 18
Variable Sized 18

