

AmpLibNet and COM Object Manual – V3.4.8.X

Copyright © 2014 All My Papers, Inc.

In older versions of AmpLib, .NET languages like Visual Basic and C# accessed the
native DLL APIs through a COM object. That COM object only supported 32-bit .NET
applications. Now that AmpLib64.dll is available, All My Papers now provides two
.NET DLLs (AmpLibNet.dll and AmpLib64.dll) so that both 32 and 64-bit .NET
applications can access the powerful AmpLib API. The methods and properties of
both DLLs are largely compatible with the COM object interface. This manual
describes these methods and properties in sufficient detail so that the demo
programs provided in the SDK can be understood and expanded upon.

The VB and C# demo programs provided in the AmpLibNet SDK are intended to
provide examples on how to use the core functionality of AmpLib with a minimal user
interface. Before you start coding, it is recommended that the example program
source code and project files be copied to a new folder so that your development
efforts won’t be hampered by the administrative restrictions of C:\Program Files.

The IampLib IampImage, IampBarcode, and IampMICR interfaces provide a
powerful yet simple paradigm for manipulating images and reading barcodes without
the need to know all of the data structures and APIs associated with the AMPLIB DLL.
Technically speaking, these interfaces are a COM object for the AMPLIB DLL. They
put a “friendly face” on the AMPLIB Application Program Interface (API) making it
more convenient to use in programming environments such as C#, C++, Visual
Basic, and Java that support COM objects.

This document is constructed as a series of hyperlinks to the various methods and
properties of IampImage, IampBarcode, and IampMICR. Use the IDispatch tables
for each in the following sections to quickly access the particular method or property
of interest. Click on the Method or Property highlighted in blue to jump to the area in
the document that has the information.

AMPLIB DLL has the ability to create and free unlimited image buffers of arbitrary
dimensions using the ampCreateWorkImage, ampCreateGrayWorkImage,
ampCreateColorWorkImage, ampFreeImage, and ampFreeAllImages API calls. The
AMPLib COM object’s IampImage interface removes the necessity of manual image
buffer management by providing an internal workimage object and an array of 10
image buffers which are always allocated. Buffer index is specified as a parameter in
API calls which use image buffers (see CopyImageToBuffer, LoadImageBuffer,
PasteImageFromBuffer, RotateImageToBuffer, ScaleImageToBuffer). For example,
CopyImageToBuffer copies the image contents of the main AmpLibNet image
property to one of the 10 auxillary image buffers. Some AmpLibNet methods like
ReadCamera use 2 image buffers for front/back image input and another 2 image
buffers for front/back image output.

The AmpLibNet DLL is a .Net interface to the AMPLIB DLL which closely resembles
the COM interface. It provides the methods and properties of the IampImage,
IampBarcode, and IampMICR interfaces in a single object, and can be used in .Net
languages like Visual Basic .NET and C#.

Appendix A contains a complete list of the error codes that are used within the
AMPLib COM object as well as the AMPLIB DLL. Appendix B contains a mapping of
how each AMPLib COM object method corresponds to a particular AMPLIB API
function or group of functions. Appendix C contains a list of AMPLIB DLL calls which
are not used by the AMPLib COM Object. Appendix D contains a description of AMPLib
COM functionality which is not present in AMPLIB DLL. Appendix E is a discussion of
which AMPLib code modules are needed for redistribution along with applications that
reference IampLib.

In order to start developing your own application based on the AmpLibNet VB or
CSharp demo projects, follow these steps:

1. Install the SDK
2. Copy the demo project folder out of the Program Files area
3. Launch VS2010 by double clicking on the .SLN file
4. Compile in debug mode
5. Copy all of the support files from the AmpLibNet bin folder to the debug folder
created in step 4.
6. Start debugging the demo program.

IampImage: IDispatch

The IampImage interface provides a method for manipulating images.

Quick Info

Header file: ampImage.h

Interface identifier: IID_IampImage

Pointer type: ampImage*

Vtable

Methods Descriptions

AnnotateImage Draws text on the image object.

CopyImageToBuffer Copies the image object to an image buffer.

CountImages Counts the number of images in a TIFF file.

DynamicThresholdGrayImage Converts a grayscale image to a bilevel image.

FilterImage Performs a filter operation on the image object.

GetAmplibVersion Retrieves the current version of AMPLIB.DLL.

GetCOMVersion Retrieves the COM object version.

GetLicenseInfo Retrieves AMPLib license bit information

GetRunsInfo Gets information on the image runlengths

GetMessage Translates an error code into a text message.

GetScaledImageAddress Creates a scaled bitmap of the image object.

GetWindow Gets the current region of interest.

InterpolateGrayImage Doubles the height and width of the image.

LoadBlankImage Loads a blank image into the image object.

LoadClipboardImage Loads the clipboard DIB into the image object.

LoadHBitmapImage Loads an HBitmap into the image object.

LoadImage Loads an image file into the image object.

LoadImageBuffer Loads an image file from a memory buffer.

LoadImageFromMemory Loads an image file from a memory buffer.

PasteImageFromBuffer Pastes an image buffer into the image object.

ProcessGrayImage Performs image processing on image object.

PromoteBilevelImage Upgrades bilevel image object to grayscale.

RotateImageToBuffer Creates a rotated version of the current image
in an image buffer.

SaveImage Saves the current image to disk.

SaveImageToClipboard Saves the current image to the clipboard.

SaveImageToMemory Saves the image to memory as G4 TIFF

SaveImageToMemoryTest Saves the image to memory then to disk

ScaleImageToBuffer Creates a scaled version of the current image
in an image buffer.

SecurityEnableAppsFile Activates OEM License from a file

SetWindow Sets the region of interest.

ThresholdGrayImage Thresholds gray image object to bilevel.

Properties Access

AutoPrepEnable Read/Write

debugTraceEnable Read/Write

debugTraceFile Read/Write

GrayImageEnable Read/Write

imgHeight Read only.

imgMaxHeight Read only.

imgMaxWidth Read only.

imgWidth Read only.

pixelBitDepth Read only.

traceEnable Read/Write

traceFile Read/Write

xResolution Read/Write

yResolution Read/Write

Remarks

The IampImage interface inherits directly from IDispatch.

1.2. IampImage::AnnotateImage

The IampImage::AnnotateImage method draws text within a stamp sized image that is then merged with the image
object.

Quick Info

See IampImage : IDispatch.

C++

HRESULT AnnotateImage (
BSTR outputText,
BSTR fontStyle,
BSTR fontOptions,
LONG rectTop,
LONG rectLeft,
LONG rectRight,
LONG rectBottom,
LONG* ampResult

);

C# int AnnotateImage (
string outputText,
string fontStyle,
string fontOptions,
int rectTop,
int rectLeft,
int rectRight,
int rectBottom,

);

C HRESULT IampImage_AnnotateImage (
BSTR outputText,
BSTR fontStyle,
BSTR fontOptions,
LONG rectTop,
LONG rectLeft,
LONG rectRight,
LONG rectBottom,
LONG* ampResult

);

JAVA int AnnotateImage (
String outputText,
String fontStyle,
String fontOptions,
int rectTop,
int rectLeft,
int rectRight,
int rectBottom,

);

VB AnnotateImage (
outputText as String,
fontStyle as String,
fontOptions as String,
rectTop as Integer
rectLeft as Integer
rectRight as Integer
rectBottom as Integer

)
as Integer;

Parameters

outputText
 The text that will be written on the image object.

fontStyle

The name of the font to be used when writing the text (e.g. Times New Roman).

fontOptions

Specifies options to be used when the font is being rasterized to the image object. Options are concatenated within
the text string (e.g. TFQ=4). The supported font options are:

B Text written with reverse background
F Draws a frame around the annotated region
I Text is drawn italicized
J Specifies the justification: center J=C, left J=L, right, J=R
P Defines the pitch of the text in the annotation and is in the

Following format:
P=0 - default
P=1 - variable
P=2 - fixed

O Defines the orientation or slant of the annotation text baseline and and is in the format “O=n” where n
can be a positive or negative number in tenths of degrees. Positive numbers rotate the text counter-
clockwise and negative numbers clockwise as in the following examples:
O=0 - default left-to-right horizontal text
O=300 – text rises up and to the left at 30 degrees
O=-900 – top-down vertical text

Q Specifies the rectangle corner the text is drawn in:
Q=0 - anywhere on the image
Q=1 - upper right
Q=2 - upper left
Q=3 - lower left
Q=4 - lower right

S Specifies the point size of the annotation text and is in the format “S=n”. A 72 point font has
upper case letters one inch tall.

T Text is written with transparent background
U Text is underlined
W Specifies the weight of the strokes used in the annotation text and is in the format “W=n”. A

value of 400 produces normal character stroke widths while smaller values are lighter/thinner and
larger values are bolder/thicker. A value of 0 selects the current value which is typically normal.

X Specifies the starting horizontal pixel location in the annotation region where text will be begun in left
justify mode. The default value for left justified text is 8. The center justify and right justify options
automatically change this value as required.
X=8 – default value for left justified
X=64 – when O=-900, XY need to be moved away from the edge of the annotation stamp region

Y Specifies the starting vertical pixel location in the annotation region where text will be begun. The
default value is 0 which is the top of the region.
Y=0 - default
Y=64 – when O=-900, XY needs to be moved away from the edge of the annotation stamp region

rectTop

This value along with the Q option specifies the vertical offset inward from the corner where the annotation stamp
will be placed. Value is specified in units of 1/100 inch.

rectLeft
This value along with the Q option specifies the horizontal offset inward from the corner where the annotation
stamp will be placed. Value is specified in units of 1/100 inch.

rectRight
This value specifies the width of the stamp region in which the outputText will be written. Value is specified in units
of 1/100 inch.

rectBottom
This value specifies the height of the stamp region in which the outputText will be written. Value is specified in
units of 1/100 inch.

ampResult

The error code returned.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code. An exception will be
thrown (e_NoMemory) if the system runs out of memory while allocating variables within this method. An exception will
be thrown (E_INVALIDARG) if the fontOptions parameters are incorrect.

Remarks

This method writes the specified text into a temporary image using the requested options and font. That temporary
image is then merged on to the image object according to the Q parameter. If the text will not fit within the temporary
region, it is clipped with no notification given if clipping occurs. Note that the requested annotation region size and
position may be adjusted by the program to maintain pixel alignment rules. The size of the temporary image is
specified in units of 1/100 inch so it is important that the resolution property of the image object is accurate.

See Also

1.3. IampImage::CopyImageToBuffer

The IampImage::CopyImageToBuffer method copies the image object to an image buffer.

Quick Info

See IampImage : IDispatch.

C++

HRESULT CopyImageToBuffer (
LONG nBufferIndex,
LONG* ampResult

);

C# int CopyImageToBuffer (
int nBufferIndex

);

C HRESULT IampImage_ CopyImageToBuffer (
LONG nBufferIndex,
LONG* ampResult

);

JAVA int CopyImageToBuffer (
int nBufferIndex

);

VB CopyImageToBuffer (
nBufferIndex as Integer

)
as Integer;

Parameters

nBufferIndex
 The index number of the buffer into which the image object contents will be written. Valid indices are 0 through 9.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code. AMPLib error code 47 will
be returned if the nBufferIndex parameter is outside of (0,9). An exception will be thrown (e_NoMemory) if the system
runs out of memory while allocating variables within this method.

Remarks

This method stores the contents of the image object in a buffer for future retrieval.

See Also

IampImage::PasteImageFromBuffer

1.4. IampImage::DynamicThresholdGrayImage

The IampImage::DynamicThresholdGrayImage method converts a grayscale image to a bilevel image.

Quick Info

See IampImage : IDispatch.

C++

HRESULT DynamicThresholdGrayImage (
double dblPCS,
LONG nAbsoluteBlackThreshold,
LONG nHistogramEnable,
LONG nLowPassEnable,
LONG* ampResult

);

C# int DynamicThresholdGrayImage (
double dblPCS,
int nAbsoluteBlackThreshold,
int nHistogramEnable,
int nLowPassEnable

);

C HRESULT IampImage_DynamicThresholdGrayImage (
double dblPCS,
LONG nAbsoluteBlackThreshold,
LONG nHistogramEnable,
LONG nLowPassEnable,
LONG* ampResult

);

JAVA int DynamicThresholdGrayImage (
double dblPCS,
int nAbsoluteBlackThreshold,
int nHistogramEnable,
int nLowPassEnable

);

VB DynamicThresholdGrayImage (
dblPCS as Double,
nAbsoluteBlackThreshold as Integer,
nHistogramEnable as Integer,
nLowPassEnable as Integer

)
as Integer;

Parameters

dblPCS

The contrast ratio threshold (range: 0-1). If dblPCS is 0.0 then the system will use the default threshold of 0.15,
which is known to produce optimal bilevel images for CAR/LAR recognition. Use a lower setting to darken the image,
or a higher setting to lighten the image.

nAbsoluteBlackThreshold

The absolute black threshold. Any grayscale pixel below this threshold will be converted to a black pixel in the
binary image. The threshold is set to 55 if nAbsoluteBlackThreshold = 0.

nHistogramEnable

If nHistogramEnable is set to 1, the system will determine the optimal threshold curve based on histogram analysis.
Use nHistogramEnable = 0 only if you know that the images have good dynamic range for contrast. The histogram
analysis will require extra processing time. Good quality check scanners produce images with good dynamic range.
Use nHistogramEnable for page scanner or unknown scanning devices.

nLowPassEnable

If nLowPassEnable = 1, the system will filter out high frequency noise in the grayscale image producing a very clean
image with a low compressed file size. Set nLowPassEnable = 0 if this operation is not desired.

Return Values

If the function succeeds, the return value is zero. If the image is already bilevel, the method will exit promptly with
success. An exception will be thrown (e_NoImage) if this method is called before an image is loaded.

Remarks

This method thresholds the 8-bit grayscale workimage property to bilevel. Input parameters are used to adjust the
algorithm for optimal results on different classes of source grayscale images.

This system requires a high quality grayscale image (> 80 DPI and 256 levels of gray). The function will return error
code 202 if the quality of the grayscale image is below these levels.

The pitch of the bilevel image will be increased to ensure that the image rows end on a byte boundary with white pixels
added for padding.

The dynamic threshold compares the grayscale value of a centre pixel to the average grayscale of the surrounding area
(1/8 sq in.). If the grayscale value is below the PCS threshold then it is turned black. This produces very good binary
images on scenic background checks.

See Also

IampImage::ThresholdGrayImage

1.5. IampImage::AutoPrepEnable

The IampImage::AutoPrepEnable property enhances the performance of LoadImage when loading MICR images.

Quick Info

See IampImage : IDispatch.

C++ HRESULT put_AutoPrepEnable (
BOOL newVal

);
HRESULT get_AutoPrepEnable (

BOOL * pVal
);

C# int AutoPrepEnable (
boolean newVal

};
boolean AutoPrepEnable

C HRESULT Iax9Lib_put_AutoPrepEnable (
BOOL newVal

);
HRESULT Iax9Lib_get_AutoPrepEnable (
BOOL * pVal

);

JAVA void set_AutoPrepEnable (
boolean newVal

);
void get_AutoPrepEnable (
boolean* pVal

);

VB AutoPrepEnable (
 NewVal As Boolean
) as Integer;
AutoPrepEnable () as Boolean;

Parameters

newVal, pVal

A flag that turns on or off AutoPrepEnable.

Remarks

LoadImage checks the value of AutoPrepEnable and if true, assumes that a check image is being loaded and proceeds
through several combinations of image processing, thresholding, and MICR reading operations with different parameters
each time. Once an optimal set of parameters are determined, the check image will be loaded into the image object
and scaled to 200 dpi. AutoPrep is best used on grayscale images of unknown resolution.

See IampImage::LoadImage

1.6. IampImage::CountImages

The IampImage::CountImages method returns the number of images in a multi-page TIFF image file.

Quick Info

See IampImage : IDispatch.

C++

HRESULT CountImages (
BSTR fileName,
BSTR options,
BSTR fileType,
LONG* pnImageCount,
LONG* ampResult

);

C# int CountImages (
string fileName,
string options,
string fileType,
int pnImageCount,

);

C HRESULT IampImage_CountImages (
BSTR fileName,
BSTR options,
BSTR fileType,
LONG* pnImageCount,
LONG* ampResult

);

JAVA int CountImages (
String fileName,
String options,
String fileType,
int pnImageCount,

);

VB CountImages (
fileName as String,
options as String,
fileType as String,
pnImageCount as Integer

)
as Integer;

Parameters

fileName
 The name of the file that will be loaded.

options

A string of characters that describe optional processing for the image data as it is loaded.

B Bit-byte-reverses the image data stream.
T Allows color components to be suppressed when loading color TIFF and JPEG files.

T=-1 Suppress red
T=-2 Suppress green
T=-3 Suppress blue

fileType

Specifies the file organization. It is only needed when the type cannot be determined by the file extension or by
reading the header information in the file. The supported file types are:

TIFF TIFF file, including ViewStar TIFF format
PCX PCX
DCX Multi-page PCX
PDF Adobe®-compatible PDF (output only)
NOHEADER Data only, no header
BMP Bitmap
JPG JPEG

pnImageCount

Returns the number of images in the multi-image source TIFF file.

ampResult
The error code returned.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code. An exception will be
thrown (e_NoMemory) if the system runs out of memory while allocating variables within this method. An exception will
be thrown (e_FileNotFound) if this method cannot find the file to load. An exception will be thrown (E_INVALIDARG) if
the options, fileType or imageIndex parameters incorrect.

Remarks

This method return the number of individual image pages in a multi-image TIFF source file.

See Also

1.7. IampImage::debugTraceEnable

The IampImage::debugTraceEnable property determines whether or not the AMPLIB COM Object debug trace
feature is enabled.

Quick Info

See IampImage: IDispatch.

C++ HRESULT put_debugTraceEnable (

int debugTraceEnable
);
HRESULT get_debugTraceEnable (

int* debugTraceEnable
);

C# int debugTraceEnable

C HRESULT IampImage_put_debugTraceEnable (
int* debugTraceEnable

);
HRESULT IampImage_get_debugTraceEnable (

int* debugTraceEnable
);

JAVA void put_debugTraceEnable (
int* debugTraceEnable

);
void get_debugTraceEnable (

int* debugTraceEnable
);

VB debugTraceEnable as Integer;

Parameters

debugTraceEnable
An integer value. If set to 1, the debug trace feature will be enabled. If set to 0, the debug trace feature will be
disabled.

Remarks

The AMPLIB COM Object debug trace feature records a log of significant events to a text file. This log may be useful to
All My Papers Customer Support during troubleshooting.

See Also

IampImage::debugTraceFile

1.8. IampImage::debugTraceFile

The IampImage::debugTraceFile property contains the destination filename of the AMPLIB COM Object debug trace
file.

Quick Info

See IampImage: IDispatch.

C++ HRESULT put_debugTraceFile (

BSTR debugTraceFile
);
HRESULT get_debugTraceFile (

BSTR* debugTraceFile
);

C# string debugTraceFile

C HRESULT IampImage_put_debugTraceFile (
BSTR debugTraceFile

);
HRESULT IampImage_get_debugTraceFile (

BSTR* debugTraceFile
);

JAVA void put_debugTraceFile (
String debugTraceFile

);
void get_debugTraceFile (

String debugTraceFile
);

VB debugTraceFile as String;

Parameters

debugTraceFile
A string that contains the path to the debug trace text file.

Remarks

The AMPLIB COM Object debug trace feature records a log of significant events to a text file. This log may be useful to
All My Papers Customer Support during troubleshooting.

See Also

IampImage::debugTraceEnable

1.9. IampImage::FilterImage

The IampImage::FilterImage method performs image processing on the image object.

Quick Info

See IampImage : IDispatch.

C++

HRESULT FilterImage (
BSTR filterStyle,
BSTR filterSubcode,
LONG threshold,
LONG* ampResult

);

C# int FilterImage (
string filterStyle,
string filterSubcode,
int threshold,

);

C HRESULT IampImage_LoadImage (
BSTR filterStyle,
BSTR filterSubcode,
LONG threshold,
LONG* ampResult

);

JAVA int LoadImage (
String filterStyle,
String filterSubcode,
int threshold,

);

VB LoadImage (
filterStyle as String,
filterSubcode as String,
threshold as Integer

)
as Integer;

Parameters

filterStyle
 Defines the class of image processing filter operation to perform. The following filters are available:

majority A directional majority filter that can preserve certain structures within the image.

erode An erosion filter useful for thinning image elements

dilate A dilation filter useful for fattening image elements.

spot A spot removal (de-speckel) filter.

For erode, dilate, and spot filters, the filterSubcode can be given as 'weak' (4-neighbor) or 'strong' (8-neighbor) to
control the strength of the effect.

4-neighbor (or 4-connected) means the adjacent pixels to the North, East, South, and West. 8-neighbor, (or 8-
connected), means any adjacent pixel in a surrounding 3x3 box.

For the majority filter, a variety of filterSubcode values can be used.

Note: the majority filters, which control preservation of lines, act only on single pixel width lines. These filters can
be useful in removing fine line screens, as appear in some negotiable documents, but they are not generalized line
removal functions.

filterSubcode

A string of characters that describe a numeric (e.g. “70” or “201”) or character-based (e.g. “WEAK” or “STRONG”)
modifier to the basic filterStyle.

Filter Type Sub Code Definition

ERODE WEAK 4- neighbor erosion. Can be used to
lighted lines. If any of 4-connected
neighbors are white, the pixel will
be set white. This filter can remove
single pixel lines.

ERODE STRONG 8- neighbor erosion. A more
aggressive filter than 4-neighbor,
this will set the pixel white if any of
the eight-connected neighbors are
white.

DILATE WEAK 4- neighbor dilation. This filter
darkens an object by setting a pixel
black if any of its 4-connected
neighbors are black.

DILATE STRONG 8- neighbor dilation The filter
darkens an object by setting a pixel
black if any of its 8 neighbors are
black.

SPOT WEAK 4x4 neighbor spot removal. A more
aggressive spot removal filter. It
will remove any black pixels in a
2x2 region if all the pixels in the
surrounding 4x4 region are white.

SPOT STRONG 6x6- neighbor spot removal. An
even more aggressive spot removal
filter. It will remove any black
pixels in a 2x2 region if all the
pixels in the surrounding 6x6 region
are white.

SPOT SINGLE Single pixel spot removal. If all 8
neighbors of a pixel are white, the
pixel is set to white.

MAJORITY NORMAL Standard majority filter. The
number of black pixels in a 3x3
region is compared to a threshold. If
the count >= the threshold, sets the
center pixel to black, else sets the
center pixel to white. Preserves
features in image.

MAJORITY ERODE A weighted erosion filter. The
number of white pixels in a 3x3
region is compared to a threshold. If
the count >= the threshold, sets the
center pixel to white. Preserves
features in image.

MAJORITY DILATE A weighted dilation filter. The
number of black pixels in a 3x3
region is compared to a threshold. If
the count >= the threshold, sets the
center pixel to black. Preserves
features in image.

MAJORITY SPUR Removes single-pixel growths from
vertical line edges

MAJORITY BUMP1 Removes one pixel growths from
vertical line edges

MAJORITY BUMP2 Removes two pixel growths from
vertical line edges

MAJORITY NORMAL_NP A weighted filter that does not try to
preserve single pixel lines in
horizontal, vertical, and diagonal
directions.

MAJORITY NORMAL_NPH Like NORMAL, except that it
preserves all but horizontal lines.

MAJORITY NORMAL_NPV Like NORMAL, except that it
preserves all but vertical lines.

MAJORITY NORMAL_NPD Like NORMAL, except that it
preserves all but diagonal lines.

MAJORITY NORMAL_NPNE Like NORMAL, except that it
preserves all but NorthEast to
southwest diagonal lines.

MAJORITY NORMAL_NPNW Like NORMAL, except that it
preserves all but Northwest to
Southeast diagonal lines.

MAJORITY ERODE_NPH Like ERODE, except that it
preserves all but horizontal lines.

MAJORITY ERODE_NPV Like ERODE, except that it
preserves all but vertical lines.

MAJORITY ERODE_NPD Like ERODE, except that it
preserves all but diagonal lines.

MAJORITY ERODE_NPNE Like ERODE, except that it
preserves all but Northeast to
Southwest diagonal lines.

MAJORITY ERODE_NPNW Like ERODE, except that it
preserves all but Northwest to
Southeast diagonal lines.

MAJORITY DILATE_NPH Like DILATE, except that it
preserves all but horizontal lines.

MAJORITY DILATE_NPV Like DILATE, except that it
preserves all but vertical lines.

MAJORITY DILATE_NPD Like DILATE, except that it
preserves all but diagonal lines.

MAJORITY DILATE_NPNE Like DILATE, except that it
preserves all but Northeast to
Southwest diagonal lines.

MAJORITY DILATE_NPNW Like DILATE, except that it
preserves all but Northwest to
Southeast diagonal lines.

threshold
This value is used for the majority filter, and ranges from 0 to 9. A threshold of 5 is considered neutral. Lower
values will give darker looking images; higher values will tend to lighten the image.

ampResult

The error code returned.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code. An exception will be
thrown (e_NoMemory) if the system runs out of memory while allocating variables within this method. An exception will
be thrown (E_INVALIDARG) if the options, filterStyle or filterSubcode parameters incorrect.

Remarks

This method loads an image file into the image object.

See Also

 IampImage::LoadImage

1.10. IampImage::GetAmplibVersion

The IampImage::GetAmplibVersion method gets the current version of AMPLIB.DLL.

Quick Info

See IampImage : IDispatch.

C++

HRESULT GetAmplibVersion (
LONG* major1,
LONG* major2,
LONG* minor1,
LONG* minor2,
LONG* ampResult

);

C# int GetAmplibVersion (
out int major1,
out int major2,
out int minor1,
out int minor2,

);

C HRESULT IampImage_GetAmplibVersion (
LONG* major1,
LONG* major2,
LONG* minor1,
LONG* minor2,
LONG* ampResult

);

JAVA int GetAmplibVersion (
int major1,
int major2,
int minor1,
int minor2,

);

VB GetAmplibVersion (
major1 as Integer,
major2 as Integer,
minor1 as Integer,
minor2 as Integer

)
as Integer;

Parameters

major1
 Contains the left most digit of the AMPLIB.DLL version number (e.g. 6 of 6.1.1.4).

major2
 Contains the second most significant digit of the version number (e.g. 1 of 6.1.1.4).

minor1

Contains the third most significant digit of the version number (e.g. 1 of 6.1.1.4).

minor2
Contains the rightmost digit in the version number (e.g. 4 of 6.1.1.4).

ampResult

The error code returned.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code.

Remarks

This method returns the version number associated with the AMPLIB.DLL that the COM object is currently connected to
in the format major1.major2.minor1.minor2 (e.g. 6.1.1.4).

1.11. IampImage::GetCOMVersion

The IampImage::GetCOMVersion method returns the version of this COM object DLL.

 Quick Info

See IampImage : IDispatch.

C++

HRESULT GetVersion (
BSTR* strVersion,
LONG* major1,
LONG* major2,
LONG* minor1,

LONG* minor2,
LONG* ampResult

);

C# int GetVersion (
out string strVersion,
out int major1,
out int major2,
out int minor1,
out int minor2

);

C HRESULT IampImage _GetVersion (
BSTR* strVersion,
LONG* major1,
LONG* major2,
LONG* minor1,
LONG* minor2,
LONG* ampResult

);

JAVA int GetVersion (
string strVersion,
int major1,
int major2,
int minor1,
int minor2

);

VB GetVersion (
strVersion as String,
major1 as Integer,
major2 as Integer,
minor1 as Integer,
minor2 as Integer

)
as Integer;

 Parameters

strVersion
 The returned version information as character data.

major1
 The returned first major number.

major2

The returned second major number.

minor1
The returned first minor number.

minor2

The returned second minor number.

ax9Result
The error code returned.

 Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code. An exception will be thrown
(E_OUTOFMEMORY) if the system runs out of memory while allocating variables within this method.

 Remarks

This method returns the version level and sub levels of the COM object DLL. The strVersion value contains the
formatted name and revision level information. The four integer variables return the Major and Minor levels of the DLL.

 See Also

1.12. IampImage::GetLicenseInfo

The IampImage::GetLicenseInfo method returns AMPLib licensing information residing on the current PC.

 Quick Info

See Iax9Lib: IDispatch.

C++

HRESULT GetLicenseInfo (
BSTR* strExpDate,
LONG* AMPLibLicenseBits,
LONG* ampResult

);

C# int GetLicenseInfo (
out string strExpDate,
out int AMPLibLicenseBits,

);

C HRESULT IampImage_ GetLicenseInfo (
BSTR* strExpDate,
LONG* AMPLibLicenseBits,
LONG* ampResult

);

JAVA int GetLicenseInfo (
string strExpDate,
int AMPLibLicenseBits,

);

VB GetLicenseInfo (
strExpDate as String,
AMPLibLicenseBits as Integer,

)
as Integer

 Parameters

strExpDate
 The returned license expiration date of AMPLib in mm/dd/yy format. Returned strings can also include “Does not
expire” based on the current license.

AMPLibLicensingBits

The returned 32 AMPLib licensing bits from the registry.

ampResult
The error code returned.

 Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code. An exception will be thrown
(E_OUTOFMEMORY) if the system runs out of memory while allocating variables within this method.

 Remarks

This method returns the AMPLib expiration date and various licensing bits associated with AMPLib from the registry.

 See Also

1.13. IampImage::GetRunsInfo

The IampImage::GetRunsInfo method returns runlength information on the current work image property. If the work
image is gray enabled, a temporary bilevel version of the image is created for runlength analysis.

 Quick Info

See Iax9Lib: IDispatch.

C++

HRESULT GetRunsInfo (
LONG nMinWidth,
LONG nMaxWidth,
LONG* nTotalBlackPixels
LONG* nTotalBlackRuns
LONG* ampResult

);

C# int GetRunsInfo (
int nMinWidth,
int nMaxWidth,
out int nTotalBlackPixels,
out int nTotalBlackRuns,

);

C HRESULT IampImage_ GetRunsInfo (
LONG nMinWidth,
LONG nMaxWidth,
LONG* nTotalBlackPixels
LONG* nTotalBlackRuns
LONG* ampResult

);

JAVA int GetRunsInfo (
int nMinWidth,
int nMaxWidth,
int nTotalBlackPixels,
int nTotalBlackRuns,

);

VB GetRunsInfo (
nMinWidth as Integer,
nMaxWidth as Integer,
nTotalBlackPixels as Integer,
nTotalBlackRuns as Integer,

)
as Integer

 Parameters

nMinWidth
 The minimum length run that will be analyzed.

nMaxWidth
 The maximum length run that will be analyzed.

nTotalBlackPixels
 The returned total number of black pixels in the image that are a part of runlengths that vary in size

 from nMinWidth to nMaxWidth.

nTotalBlackRuns
 The returned total number of runlengths in the image that vary in size from nMinWidth to nMaxWidth.

ampResult

The error code returned.

 Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code. An exception will be thrown
(E_OUTOFMEMORY) if the system runs out of memory while allocating variables within this method.

 Remarks

This method analyzes the black runlengths in the current work image that vary in size between nMinWidth and
nMaxWidth. The total number of pixels in these runs is returned along with the total number of runs. If the work image
is gray enabled, a temporary bilevel version of the image is created prior to the runlength analysis.

2.
 See Also

2.2. IampImage::GetMessage

The IampImage::GetMessage translates an error code into an appropriate text string.

 Quick Info

See IampImage: IDispatch.

C++

HRESULT GetMessage (
LONG rcVal,
BSTR* strMessage,
LONG* ampResult

);

C# int GetMessage (
int rcVal,
out string strMessage,

);

C HRESULT Iax9Lib_ GetMessage (
LONG rcVal,
BSTR* strMessage,
LONG* ampResult

);

JAVA int GetMessage (
int rcVal,
string strMessage,

);

VB GetMessage (
rcVal as Integer,
strMessage as String,

)
as Integer

 Parameters

rcVal
 The input return code value.

strMessage
 The returned message that corresponds to the input AMPLib return code value.

ampResult
The error code returned.

 Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code. An exception will be thrown
(E_OUTOFMEMORY) if the system runs out of memory while allocating variables within this method.

 Remarks

This method returns an error code string that matches the input integer value. For example, if the input value is 107,
the value passed back through strMessage will be “License required for this feature.”

 See Also

2.3. IampImage::GetWindow

The IampImage::GetWindow method gets the current region of interest.

Quick Info

See IampImage : IDispatch.

C++

HRESULT GetWindow (
LONG* left,
LONG* top,
LONG* width,
LONG* height,
LONG* ampResult

);

C# int GetWindow (
out int left,
out int top,
out int width,
out int height,

);

C HRESULT IampImage_GetWindow (
LONG* left,
LONG* top,
LONG* width,
LONG* height,
LONG* ampResult

);

JAVA int GetWindow (
int left,
int top,
int width,
int height,

);

VB GetWindow (
left as Integer,
top as Integer,
width as Integer,
height as Integer

)
as Integer;

Parameters

left

 Contains the number of pixels for the left margin of the region.

top
 Contains the number of pixels for the top margin of the region.

width

Contains the number of pixels for the horizontal length of the region.

height
Contains the number of pixels for the vertical length of the region.

ampResult

The error code returned.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code.

Remarks

This method gets the region of interest. An exception will be thrown (e_NoImage) if this method is called before an
image is loaded.

See Also

IampImage::SetWindow

2.4. IampImage::GetScaledImageAddress

The IampImage::GetScaledImageAddress method creates a new working image in the AMPLib COM Object that can
be used in a .NET PictureBox.

Quick Info

See IampImage : IDispatch.

C++

HRESULT GetAmplibVersion (
LONG nWidth,
LONG nHeight,
LONG nFormat,
LONG* pdwBytePitch,
LONG* pdwAddress,
LONG* ampResult

);

C# int GetAmplibVersion (
int nWidth,
int nHeight,
int nFormat,
out int pdwBytePitch,
out int pdwAddress

);

C HRESULT IampImage_GetAmplibVersion (
LONG nWidth,
LONG nHeight,
LONG nFormat,
LONG* pdwBytePitch,
LONG* pdwAddress,
LONG* ampResult

);

JAVA int GetAmplibVersion (
Integer nWidth,
Integer nHeight,
Integer nFormat,
Integer* pdwBytePitch,
Integer* pdwAddress

);

VB GetAmplibVersion (
nWidth as Integer,
nHeight as Integer,
nFormat as Integer,
pdwBytePitch as Integer,
pdwAddress as Integer

)
as Integer;

Parameters

nWidth
 Sets the width, in pixels, of the result image.

nHeight
 Sets the height, in pixels, of the result image.

nFormat

0 sets the image to bilevel (black & white) format.
1 sets the image to bilevel format with colors inverted.

pdwBytePitch

Contains the number of bytes per raster in the scaled image.

pdwAddress
Contains the address of the beginning of the image data.

ampResult

The error code returned.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code.

Remarks

This method creates a scaled bitmap of the AMPLib image object designed to be used in a .NET PictureBox, and provides
information necessary to use it.

2.5. IampImage::GrayImageEnable

The IampImage::GrayImageEnable property allows the workimage property to contain grayscale images.

Quick Info

See IampImage : IDispatch.

C++ HRESULT put_GrayImageEnable (
BOOL newVal

);
HRESULT get_GrayImageEnable (

BOOL * pVal
);

C# int GrayImageEnable (
boolean newVal

};
boolean AutoPrepEnable

C HRESULT IampImage_put_GrayImageEnable (
BOOL newVal

);
HRESULT IampImage_get_GrayImageEnable (
BOOL * pVal

);

JAVA void set_GrayImageEnable (
boolean newVal

);
void get_GrayImageEnable (
boolean* pVal

);

VB GrayImageEnable (
 NewVal As Boolean
) as Integer;
GrayImageEnable () as Boolean;

Parameters

newVal, pVal

A flag that turns on or off AutoPrepEnable.

Remarks

LoadImage checks the value of GrayImageEnable and if true, changes the workimage property to have a grayscale
attribute before the image is loaded. If the image loaded is bilevel, the workimage property will be bilevel. If the image
loaded is grayscale or color, then the workimage property will be 8-bit grayscale. The method GetPixelBitDepth can be
used after LoadImage to determine whether the image was grayscale or bilevel.

See IampImage::LoadImage

2.6. IampImage::imgHeight

The IampImage::imgHeight property is the height of the loaded image.

Quick Info

See IampImage : IDispatch.

C++ HRESULT get_imgHeight (
LONG* pVal

);

C# Long imgHeight

C HRESULT IampImage_get_imgHeight (
LONG* pVal

);

JAVA void get_imgHeight (
int* pVal

);

VB imgHeight () as Long;

Parameters

pVal
A pointer to a variable that will receive the value.

Remarks

The height of the image remains unchanged until a new image is loaded or the SetWindow method is called. This
value is the same as the height parameter returned with GetWindow. An exception will be thrown (e_NoImage) if
this property is accessed before an image is loaded.

See Also

IampImage::imgWidth, IampImage::GetWindow, IampImage::SetWindow

2.7. IampImage::imgMaxHeight

The IampImage::imgMaxHeight property is the maximum height of the loaded image.

Quick Info

See IampImage : IDispatch.

C++ HRESULT get_imgMaxHeight (
LONG* pVal

);

C# Long imgMaxHeight

C HRESULT IampImage_get_imgMaxHeight (
LONG* pVal

);

JAVA void get_imgMaxHeight (
int* pVal

);

VB imgMaxHeight () as Long;

Parameters

pVal
A pointer to a variable that will receive the value.

Remarks

The maximum height of the image is established when a new image is loaded. The SetWindow
method does not change the maximum height. An exception will be thrown (e_NoImage) if this property is accessed
before an image is loaded.

See Also

IampImage::LoadImage

2.8. IampImage::imgMaxWidth

The IampImage::imgMaxWidth property is the maximum width of the loaded image.

Quick Info

See IampImage : IDispatch.

C++ HRESULT get_imgMaxWidth (
LONG* pVal

);

C# Long imgMaxWidth

C HRESULT IampImage_get_imgMaxWidth (
LONG* pVal

);

JAVA void get_imgMaxWidth (
int* pVal

);

VB imgMaxWidth () as Long;

Parameters

pVal
A pointer to a variable that will receive the value.

Remarks

The maximum width of the image is established when a new image is loaded. The SetWindow
method does not change the maximum width. An exception will be thrown (e_NoImage) if this property is accessed
before an image is loaded.

See Also

IampImage::LoadImage

2.9. IampImage::imgWidth

The IampImage::imgWidth property is the width of the loaded image.

Quick Info

See IampImage : IDispatch.

C++ HRESULT get_imgWidth (
LONG* pVal

);

C# Long imgWidth

C HRESULT IampImage_get_imgWidth (
LONG* pVal

);

JAVA void get_imgWidth (
int* pVal

);

VB imgWidth () as Long;

Parameters

pVal
A pointer to a variable that will receive the value.

Remarks

The width of the image remains unchanged until a new image is loaded. This value is the same as the width
parameter returned with GetWindow. An exception will be thrown (e_NoImage) if this property is accessed before
an image is loaded.

See Also

IampImage::imgHeight, IampImage::GetWindow, IampImage::SetWindow

2.10. IampImage::InterpolateGrayImage

The IampImage::InterpolateGrayImage method doubles the height and width of the grayscale workimage property.

Quick Info

See IampImage : IDispatch.

C++

HRESULT InterpolateGrayImage (
LONG* ampResult

);

C# int InterpolateGrayImage (
);

C HRESULT IampImage_InterpolateGrayImage (
LONG* ampResult

);

JAVA int InterpolateGrayImage (
);

VB InterpolateGrayImage (
)

as Integer;

Parameters

ampResult

The error code returned.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code.

Remarks

This method method doubles the height and width of the workimage property filling in the new pixels with the
average value of neighboring pixels. If the workimage was bilevel, it will be promoted to grayscale before the
interpolation operation. An exception will be thrown (e_NoImage) if this method is called before an image is
loaded.

See Also

2.11. IampImage::LoadBlankImage

The IampImage::LoadBlankImage method fills the image object with a blank (white) bitmap.

Quick Info

See IampImage : IDispatch.

C++

HRESULT LoadBlankImage (
LONG width,
LONG height,
LONG* ampResult

);

C# int LoadBlankImage (
int width,
int height,

);

C HRESULT IampImage_LoadBlankImage (
LONG width,
LONG height,
LONG* ampResult

);

JAVA int LoadBlankImage (
int width,
int height,

);

VB LoadBlankImage (
width as Integer,
height as Integer

)
as Integer;

Parameters

width

Specifies the number of pixels for the horizontal width of the blank image. If this value is less than
32 pixels the width and height will be forced to 1200 and 600.

height

Specifies the number of pixels for the vertical height of the blank image. If this value is less than
32 pixels the width and height will be forced to 1200 and 600.

ampResult

The error code returned.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code.

Remarks

This method erases the current image and replaces it with a blank image (white) of the specified size.

See Also

2.12. IampImage::LoadClipboardImage

The IampImage::LoadClipboardImage method loads the image property with the contents of the clipboard.

Quick Info

See IampImage : IDispatch.

C++

HRESULT LoadClipboardImage (
LONG hWnd,
LONG* ampResult

);

C# int LoadClipboardImage (
int hWnd,

);

C HRESULT IampImage_ LoadClipboardImage (
LONG hWnd,
LONG* ampResult

);

JAVA int LoadClipboardImage (
int hWnd,

);

VB LoadClipboardImage (
hWnd as Integer

)
as Integer;

Parameters

hWnd

Specifies the windows handle for the current application.

ampResult
The error code returned.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code.

Remarks

This method loads the image property with any DIB image residing in the Windows Clipboard.

See Also

IampImage::LoadImage

2.13. IampImage::LoadHBitmapImage

The IampImage::LoadHBitmapImage method loads the image property with a Windows HBitmap.

Quick Info

See IampImage : IDispatch.

C++

HRESULT LoadHBitmapImage (
LONG hBitmap,
LONG nStyle,
LONG nThreshold,
LONG* ampResult

);

C# int LoadHBitmapImage (
int hBitmap,
int nStyle,
int nThreshold

);

C HRESULT IampImage_LoadHBitmapImage (
LONG hBitmap,
LONG nStyle,
LONG nThreshold,
LONG* ampResult

);

JAVA int LoadHBitmapImage (
int hBitmap,
int nStyle,
int nThreshold

);

VB LoadHBitmapImage (
hBitmap as IntPtr,
nStyle as Integer,
nThreshold as Integer

)
as Integer;

Parameters

hBitmap

Specifies the windows HBitmap to use.

nStyle
This should always be set to 0.

nThreshold

This should always be set to 0.

ampResult
The error code returned.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code.

Remarks

This method loads the image property with the contents of a windows HBitmap. The HBitmap to use is specified by a
windows handle, such as the return value of the .NET System.Drawing.Bitmap.GetHbitmap() call.

See Also

IampImage::LoadImage

2.14. IampImage::LoadImage

The IampImage::LoadImage method loads an image file from disk into the image object.

Quick Info

See IampImage : IDispatch.

C++

HRESULT LoadImage (
BSTR fileName,
BSTR options,
BSTR fileType,
LONG imageIndex,
LONG* ampResult

);

C# int LoadImage (
string fileName,
string options,
string fileType,
int imageIndex,

);

C HRESULT IampImage_LoadImage (
BSTR fileName,
BSTR options,
BSTR fileType,
LONG imageIndex,
LONG* ampResult

);

JAVA int LoadImage (
String fileName,
String options,
String fileType,
int imageIndex,

);

VB LoadImage (
fileName as String,
options as String,
fileType as String,
tifByteOrder as Integer

)
as Integer;

Parameters

fileName
 The name of the file that will be loaded.

options

A string of characters that describe optional processing for the image data as it is loaded.

B Bit-byte-reverses the image data stream.
T Allows color components to be suppressed when loading color TIFF and JPEG files.

T=-1 Suppress red
T=-2 Suppress green
T=-3 Suppress blue

fileType

Specifies the file organization. It is only needed when the type cannot be determined by the file extension or by
reading the header information in the file. The supported file types are:

TIFF TIFF file, including ViewStar TIFF format
PCX PCX
DCX Multi-page PCX
PDF Adobe®-compatible PDF (output only)
NOHEADER Data only, no header
BMP Bitmap
JPG JPEG

imageIndex

Specifies which image to load in a multi-image TIFF file. The range is 1-n.

ampResult
The error code returned.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code. An exception will be
thrown (e_NoMemory) if the system runs out of memory while allocating variables within this method. An exception will
be thrown (e_FileNotFound) if this method cannot find the file to load. An exception will be thrown (E_INVALIDARG) if
the options, fileType or imageIndex parameters incorrect.

Remarks

This method loads an image file into the image object. If AutoPrepEnable is active, then several combinations of image
processing, thresholding, and MICR reading operations will be performed in order to find the optimal settings for the
best MICR read. Once these optimal settings are found, the processed image will be scaled to 200 dpi. AutoPrep is best
used on grayscale images of unknown resolution.

See Also

IampImage::SetWindow, IampImage::AutoPrepEnable

2.15. IampImage::LoadImageBuffer

The IampImage::LoadImageBuffer method loads an image file located in a memory buffer into the image object.

Quick Info

See IampImage : IDispatch.

C++

HRESULT LoadImageBuffer (
BYTE *pbyBuffer,
BSTR options,
BSTR fileType,
LONG imageIndex,
LONG bufferSize,
LONG* ampResult

);

C# int LoadImageBuffer (
BYTE *pbyBuffer,
string options,
string fileType,
int imageIndex,
int bufferSize,

);

C HRESULT IampImage_LoadImageBuffer (
BYTE *pbyBuffer,
BSTR options,
BSTR fileType,
LONG imageIndex,
LONG bufferSize,
LONG* ampResult

);

JAVA int LoadImageBuffer (
BYTE *pbyBuffer,
String options,
String fileType,
int imageIndex,
int bufferSize,

);

VB LoadImageBuffer (
pbyBuffer as INTPTR,
options as String,
fileType as String,
tifByteOrder as Integer,
bufferSize as Integer,

)
as Integer;

Parameters

pbyBuffer
 The location of the memory buffer that holds the file that will be loaded.

options

A string of characters that describe optional processing for the image data as it is loaded.

B Bit-byte-reverses the image data stream.
T Allows color components to be suppressed when loading color TIFF and JPEG files.

T=-1 Suppress red
T=-2 Suppress green
T=-3 Suppress blue

fileType

Specifies the file organization. It is only needed when the type cannot be determined by the file extension or by
reading the header information in the file. The supported file types are:

TIFF TIFF file, including ViewStar TIFF format
PCX PCX
DCX Multi-page PCX
PDF Adobe®-compatible PDF (output only)
NOHEADER Data only, no header
BMP Bitmap
JPG JPEG

imageIndex

Specifies which image to load in a multi-image TIFF file. The range is 1-n.

bufferSize
 The size of the file in bytes that has been loaded into the memory buffer.

ampResult

The error code returned.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code. An exception will be
thrown (e_NoMemory) if the system runs out of memory while allocating variables within this method. An exception will
be thrown (e_FileNotFound) if this method cannot find the file to load. An exception will be thrown (E_INVALIDARG) if
the options, fileType or imageIndex parameters incorrect.

Remarks

This method loads an image file that has been read into a memory buffer into the image object.

See Also

IampImage::SetWindow, IampImage::LoadImage

2.16. IampImage::LoadImageFromMemory

The IampImage::LoadImageFromMemory method loads an image file located in a memory buffer into the image
object.

Quick Info

See IampImage : IDispatch.

C++

HRESULT LoadImageFromMemory (
LONG dwBufferAddress,
BSTR options,
BSTR fileType,
LONG imageIndex,
LONG bufferSize,
LONG* ampResult

);

C# int LoadImageFromMemory (
int dwBufferAddress,
string options,
string fileType,
int imageIndex,
int bufferSize,

);

C HRESULT IampImage_LoadImageFromMemory (
LONG dwBufferAddress,
BSTR options,
BSTR fileType,
LONG imageIndex,
LONG bufferSize,
LONG* ampResult

);

JAVA int LoadImageFromMemory (
int dwBufferAddress,
String options,
String fileType,
int imageIndex,
int bufferSize,

);

VB LoadImageFromMemory (
dwBufferAddress as INTPTR,
options as String,
fileType as String,
tifByteOrder as Integer,
bufferSize as Integer,

)
as Integer;

Parameters

dwBufferAddress
 The location of the memory buffer that holds the file that will be loaded.

options

A string of characters that describe optional processing for the image data as it is loaded.

B Bit-byte-reverses the image data stream.
T Allows color components to be suppressed when loading color TIFF and JPEG files.

T=-1 Suppress red
T=-2 Suppress green
T=-3 Suppress blue

fileType

Specifies the file organization. It is only needed when the type cannot be determined by the file extension or by
reading the header information in the file. The supported file types are:

TIFF TIFF file, including ViewStar TIFF format

PCX PCX
DCX Multi-page PCX
PDF Adobe®-compatible PDF (output only)
NOHEADER Data only, no header
BMP Bitmap
JPG JPEG

imageIndex

Specifies which image to load in a multi-image TIFF file. The range is 1-n.

bufferSize
 The size of the file in bytes that has been loaded into the memory buffer.

ampResult

The error code returned.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code. An exception will be
thrown (e_NoMemory) if the system runs out of memory while allocating variables within this method. An exception will
be thrown (e_FileNotFound) if this method cannot find the file to load. An exception will be thrown (E_INVALIDARG) if
the options, fileType or imageIndex parameters incorrect.

Remarks

This method loads an image file that has been read into a memory buffer into the image object. This method is
identical to LoadImageBuffer except for the type of the first parameter dwBufferAddress/pbyBuffer.

See Also

IampImage::LoadImage, IampImage::LoadImageBuffer

2.17. IampImage::PasteImageFromBuffer

The IampImage::PasteImageFromBuffer method pastes an image buffer into the image object.

Quick Info

See IampImage : IDispatch.

C++

HRESULT PasteImageFromBuffer (
LONG nBufferIndex,
LONG* ampResult

);

C# int PasteImageFromBuffer (
int nBufferIndex

);

C HRESULT IampImage_PasteImageFromBuffer (
LONG nBufferIndex,
LONG* ampResult

);

JAVA int PasteImageFromBuffer (
int nBufferIndex

);

VB PasteImageFromBuffer (
nBufferIndex as Integer

)
as Integer;

Parameters

nBufferIndex
 The index number of the buffer that will be pasted into the image object. Valid indices are 0 through 9.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code. AMPLib error code 47 will
be returned if the nBufferIndex parameter is outside of (0,9). An exception will be thrown (e_NoMemory) if the system
runs out of memory while allocating variables within this method.

Remarks

This method restores the copied contents of the image object from a buffer.

See Also

IampImage::CopyImageToBuffer

2.18. IampImage::pixelBitDepth

The IampImage::pixelBitDepth property is the number of bits used for each pixel in the loaded image.

Quick Info

See IampImage : IDispatch.

C++ HRESULT get_pixelBitDepth (
LONG* pVal

);

C# Long pixelBitDepth

C HRESULT IampImage_get_pixelBitDepth (
LONG* pVal

);

JAVA void get_pixelBitDepth (
int* pVal

);

VB pixelBitDepth () as Long;

Parameters

pVal
A pointer to a variable that will receive the value.

Remarks

This value remains at 1 unless GrayImageEnable is active. If GrayImageEnable is active then the value will be 8 if a
grayscale or color image is loaded with LoadImage or if LoadBlankImage is called. An exception will be thrown
(e_NoImage) if this property is accessed before an image is loaded.

See Also

IampImage::LoadImage, IampImage::LoadBlankImage

2.19. IampImage::traceEnable

The IampImage::traceEnable property determines whether or not the AMPLIB DLL trace feature is enabled.

Quick Info

See IampImage: IDispatch.

C++ HRESULT put_traceEnable (
int traceEnable

);
HRESULT get_traceEnable (

int* traceEnable
);

C# int traceEnable

C HRESULT IampImage_put_traceEnable (
int* traceEnable

);
HRESULT IampImage_get_traceEnable (

int* traceEnable
);

JAVA void put_traceEnable (
int* traceEnable

);
void get_traceEnable (

int* traceEnable
);

VB traceEnable as Integer;

Parameters

traceEnable
An integer value. If set to 1, the trace feature will be enabled. If set to 0, the trace feature will be disabled.

 Remarks

The AMPLIB DLL trace feature records a log of significant events to a text file. This log may be useful to All My Papers
Customer Support during troubleshooting.

See Also

IampImage::traceFile

2.20. IampImage::traceFile

The IampImage::traceFile property contains the destination filename of the AMPLIB DLL trace file.

Quick Info

See IampImage: IDispatch.

C++ HRESULT put_traceFile (
BSTR traceFile

);
HRESULT get_traceFile (

BSTR* traceFile
);

C# string traceFile

C HRESULT IampImage_put_traceFile (
BSTR traceFile

);
HRESULT IampImage_get_traceFile (

BSTR* traceFile
);

JAVA void put_traceFile (
String traceFile

);
void get_traceFile (

String traceFile
);

VB traceFile as String;

Parameters

traceFile
A string that contains the path to the trace text file.

Remarks

The AMPLIB DLL trace feature records a log of significant events to a text file. This log may be useful to All My Papers
Customer Support during troubleshooting.

See Also

IampImage::traceEnable

2.21. IampImage::ProcessGrayImage

The IampImage::ProcessGrayImage method performs the selected image processing operation on the grayscale
workimage object.

Quick Info

See IampImage : IDispatch.

C++

HRESULT ProcessGrayImage (
LONG lOperation,
LONG* ampResult

);

C# int ProcessGrayImage (
int lOperation,

);

C HRESULT IampImage_ ProcessGrayImage (
LONG lOperation,
LONG* ampResult

);

JAVA int ProcessGrayImage (
int lOperation,

);

VB ProcessGrayImage (
lOperation as Integer,

)
as Integer;

Parameters

lOperation

 Specifies the image processing operation to be used. This set of values is identical to the set used for
ampGrayProcesses and is shown below:

 0 - GRAYLIGHTEN - lightens the image 8 greyscale steps
 1 - GRAYDARKEN - darkens the image 8 greyscale steps
 2 - GRAYREVERSE - 0-255 becomes 255-0
 3 - GRAYSTRETCH - stretches greyscales from 32-224 to 0-255
 4 - GRAYCOMPRESS - 0-255 becomes 32-224
 5 - GRAYNORMALIZE - the current dynamic range becomes 0-255
 6 - GRAYTHRESHOLD - 0-255 is thresholded at 64
 7 - GRAYMILDSHARPEN - Mildly enhance the image edges
 8 - GRAYSTRONGSHARPEN - Strongly enhance the image edges
 9 - GRAYMILDBLEND - Mildly enhance the image edges
 10 - GRAYSTRONGBLEND - Strongly enhance the image edges
 11 - GRAYGAMMALIGHTEN1 – First style of gamma lightening
 12 - GRAYGAMMALIGHTEN2 – Second style of gamma lightening
 13 - GRAYGAMMALIGHTEN3 – Third style of gamma lightening
 14 - GRAYGAMMAEQUALIZE – Gamma dynamic range equalization

ampResult
The error code returned.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code.

Remarks

This method performs an operation on the 8-bit grayscale workimage object. If the image is bilevel, it will be promoted
to 8-bit grayscale first. An exception will be thrown (e_NoImage) if this method is called before an image is loaded.

See Also

2.22. IampImage::PromoteBilevelImage

The IampImage::PromoteBilevelImage method converts a bilevel workimage property to 8-bit grayscale.

Quick Info

See IampImage : IDispatch.

C++

HRESULT PromoteBilevelImage (
LONG* ampResult

);

C# int PromoteBilevelImage (
);

C HRESULT IampImage_PromoteBilevelImage (
LONG* ampResult

);

JAVA int PromoteBilevelImage (
);

VB PromoteBilevelImage (
)

as Integer;

Parameters

ampResult

The error code returned.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code.

Remarks

This method promotes 1-bit per pixel workimage property to 8-bit per pixel grayscale leaving the visual appearance
unchanged. If the workimage is already grayscale then the method immediately returns with success. An exception will
be thrown (e_NoImage) if this method is called before an image is loaded.

See Also

2.23. IampImage::RotateImageToBuffer

The IampImage::RotateImageToBuffer method rotates the current image object selection and stores the result in
an image buffer.

Quick Info

See IampImage : IDispatch.

C++

HRESULT RotateImageToBuffer (
LONG nDegrees,
LONG nBufferIndex,
LONG* ampResult

);

C# int RotateImageToBuffer (
int nDegrees,
int nBufferIndex

);

C HRESULT IampImage_RotateImageToBuffer (
LONG nDegrees,
LONG nBufferIndex,
LONG* ampResult

);

JAVA int RotateImageToBuffer (
int nDegrees,
int nBufferIndex

);

VB RotateImageToBuffer (
nDegrees as Integer,
nBufferIndex as Integer

)
as Integer;

Parameters

nDegrees
 The amount of degrees the source image will be rotated: 90, 180, or 270.

nBufferIndex
 The index number of the buffer into which the scaled image will be written. Valid indices are 0 through 9.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code. AMPLib error code 47 will
be returned if the nBufferIndex parameter is outside of (0,9). An exception will be thrown (e_NoMemory) if the system
runs out of memory while allocating variables within this method.

Remarks

This method rotates the current image object counter-clockwise the amount of degrees selected and then stores the
result image in the selected buffer for future retrieval. The image object is not affected by this operation.

The image object selection can be set with the IampImage::SetWindow command. If no selection is specified, the entire
image object is rotated.

See Also

IampImage::SetWindow
IampImage::PasteImageFromBuffer

2.24. IampImage::SaveImage

The IampImage::SaveImage method saves an image file from the image object to disk.

Quick Info

See IampImage : IDispatch.

C++

HRESULT SaveImage (
BSTR fileName,
BSTR options,
BSTR fileType,
LONG* ampResult

);

C# int SaveImage (
string fileName,
string options,
string fileType

);

C HRESULT IampImage_SaveImage (
BSTR fileName,
BSTR options,
BSTR fileType,
LONG* ampResult

);

JAVA int SaveImage (
String fileName,
String options,
String fileType

);

VB SaveImage (
fileName as String,
options as String,
fileType as String

)
as Integer;

Parameters

fileName

 The name of the file that will be saved. Some extensions are automatically recognized:

TIF File is a TIFF file

PCX File is a Paintbrush PCX file

BMP File is a Bitmap

JPG File is a JPEG

options

A string of characters that describe optional processing for the image data during save:

A Appends image data to file; used for creating multi-image format files.

B Bit-byte-reverses the image data stream. See note above. Without this option, TIFF files will be
created with Fill Order 2. With the B option, the Fill Order is set to 1.

Q Format is "Q=n", which sets the quality level for JPEG files.

R Format is "R=n", which sets the X and Y resolution tags in the TIFF file to n; used when the
resolution information is not already known internally or you need to override the value.

X Format is "X=n", which sets the X-resolution tag in the TIFF file to n.

Y Format is "Y=n", which sets the Y-resolution tag in the TIFF file to n.

U Format is "U=n", which sets the ResolutionUnits tag in the TIFF file to n; the default value is 2.

fileType
Specifies the file organization. It is only needed when the type cannot be determined by the file extension or by
reading the header information in the file. The supported file types are:

TIFF TIFF file, including ViewStar TIFF format
PCX PCX
DCX Multi-page PCX
PDF Adobe®-compatible PDF (output only)
NOHEADER Data only, no header
BMP Bitmap
JPG JPEG

ampResult

The error code returned.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code. An exception will be
thrown (e_NoMemory) if the system runs out of memory while allocating variables within this method. An exception will
be thrown (e_FileNotFound) if this method cannot find the directory in which to save the file. An exception will be
thrown (E_INVALIDARG) if the options, fileType or imageIndex parameters incorrect.

Remarks

This method save image object to a compressed disk file.

See Also

IampImage::LoadImage

2.25. IampImage::SaveImageEx

The IampImage::SaveImageEx method saves an image file from the image object to disk with enhanced control over
the ASCII tags in the output file TIFF header.

Quick Info

See IampImage : IDispatch.

C++

HRESULT SaveImage (
BSTR fileName,
BSTR options,
BSTR fileType,
LONG nNoAscii,
LONG* ampResult

);

C# int SaveImage (
string fileName,
string options,
string fileType,
int nNoAscii

);

C HRESULT IampImage_SaveImage (
BSTR fileName,
BSTR options,
BSTR fileType,
LONG nNoAscii,
LONG* ampResult

);

JAVA int SaveImage (
String fileName,
String options,
String fileType,
int nNoAscii,

);

VB SaveImage (
fileName as String,
options as String,
fileType as String,
nNoAscii as Integer,

)
as Integer;

Parameters

fileName

 The name of the file that will be saved. Some extensions are automatically recognized:

TIF File is a TIFF file

PCX File is a Paintbrush PCX file

BMP File is a Bitmap

JPG File is a JPEG

options

A string of characters that describe optional processing for the image data during save:

A Appends image data to file; used for creating multi-image format files.

B Bit-byte-reverses the image data stream. See note above. Without this option, TIFF files will be
created with Fill Order 2. With the B option, the Fill Order is set to 1.

Q Format is "Q=n", which sets the quality level for JPEG files.

R Format is "R=n", which sets the X and Y resolution tags in the TIFF file to n; used when the
resolution information is not already known internally or you need to override the value.

X Format is "X=n", which sets the X-resolution tag in the TIFF file to n.

Y Format is "Y=n", which sets the Y-resolution tag in the TIFF file to n.

U Format is "U=n", which sets the ResolutionUnits tag in the TIFF file to n; the default value is 2.

fileType
Specifies the file organization. It is only needed when the type cannot be determined by the file extension or by
reading the header information in the file. The supported file types are:

TIFF TIFF file, including ViewStar TIFF format
PCX PCX
DCX Multi-page PCX
PDF Adobe®-compatible PDF (output only)
NOHEADER Data only, no header
BMP Bitmap
JPG JPEG

nNoAscii

When this value is nonzero, ASCII tags in the output TIFF file (if specified) will be suppressed. This option is useful
for removing the Time Stamp tag from the output file.

ampResult
The error code returned.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code. An exception will be
thrown (e_NoMemory) if the system runs out of memory while allocating variables within this method. An exception will
be thrown (e_FileNotFound) if this method cannot find the directory in which to save the file. An exception will be
thrown (E_INVALIDARG) if the options, fileType or imageIndex parameters incorrect.

Remarks

This method save image object to a compressed disk file.

See Also

IampImage::LoadImage

2.26. IampImage::SaveImageToClipboard

The IampImage::SaveImageToClipboard method saves the current image to the clipboard.

Quick Info

See IampImage : IDispatch.

C++

HRESULT SaveImageToClipboard (
LONG hWnd,
LONG* ampResult

);

C# int SaveImageToClipboard (
int hWnd,

);

C HRESULT IampImage_ SaveImageToClipboard (
LONG hWnd,
LONG* ampResult

);

JAVA int SaveImageToClipboard (
int hWnd,

);

VB SaveImageToClipboard (
hWnd as Integer

)
as Integer;

Parameters

hWnd

Specifies the windows handle for the current application.

ampResult
The error code returned.

Return Values

Remarks

This method saves the image contained within the image object to the clipboard in order that the image might be used
by another Windows application or used within a VB application for display in a PictureBox.

See Also

IampImage::SetWindow

2.27. IampImage::SaveImageToMemory

The IampImage::SaveImageToMemory method saves the image object to memory in a compressed G4 TIFF data
format.

Quick Info

See IampImage : IDispatch.

C++

HRESULT SaveImageToMemory (
 LONG dwBufferAddress,
 LONG dwBufferSize,

BSTR options,
BSTR fileType,
LONG* pdwBufferUsed,
LONG* ampResult

);

C# int SaveImageToMemory (
 int dwBufferAddress,
 int dwBufferSize,

string options,
string fileType,
out int pdwBufferUsed

);

C HRESULT IampImage_SaveImageToMemory (
 LONG dwBufferAddress,
 LONG dwBufferSize,

BSTR options,
BSTR fileType,
LONG* pdwBufferUsed,
LONG* ampResult

);

JAVA int SaveImageToMemory (
 integer dwBufferAddress,
 integer dwBufferSize,

String options,
String fileType,
integer* pdwBufferUsed,

);

VB SaveImageToMemory (
 dwBufferAddress as LONG,
 dwBufferSize as LONG,

options as String,
fileType as String,
pdwBufferUsed as Integer,

)
as Integer;

Parameters

dwBufferAddress

The starting address of the memory buffer in memory.

dwBufferSize
The size of the memory buffer in bytes.

options

A string of characters that describe optional processing for the image data during save:

B Bit-byte-reverses the image data stream. See note above. Without this option, TIFF files will be
created with Fill Order 2. With the B option, the Fill Order is set to 1.

R Format is "R=n", which sets the X and Y resolution tags in the TIFF file to n; used when the
resolution information is not already known internally or you need to override the value.

X Format is "X=n", which sets the X-resolution tag in the TIFF file to n.

Y Format is "Y=n", which sets the Y-resolution tag in the TIFF file to n.

U Format is "U=n", which sets the ResolutionUnits tag in the TIFF file to n; the default value is 2.

fileType
Specifies the file organization. It is only needed when the type cannot be determined by the file extension or by
reading the header information in the file. The supported file types are:

TIFF Tagged Image File Format file

pdwBufferUsed
The size of the compressed G4 data in bytes.

ampResult

The error code returned.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code. An exception will be
thrown (e_NoMemory) if the system runs out of memory while allocating variables within this method. An exception will
be thrown (e_FileNotFound) if this method cannot find the directory in which to save the file. An exception will be
thrown (E_INVALIDARG) if the options, fileType or imageIndex parameters incorrect.

Remarks

This method saves the image object to an internal memory buffer in TIFF G4 encoding. This buffer is supplied by the
caller and is recommended to be at least 512K bytes so that even complex G4 images will fit with room to spare. If the
image object is grayscale, a temporary bilevel image will be created and the image object will be thresholded before
saving as TIFF G4.

See Also

IampImage::LoadImageFromMemory, IampImage::LoadImage

2.28. IampImage::SaveImageToMemoryTest

The IampImage::SaveImageToMemoryTest method saves the image object to a 65K memory buffer using
SaveImageToMemory and then to disk.

Quick Info

See IampImage : IDispatch.

C++

HRESULT SaveImage (
BSTR fileName,
BSTR options,
BSTR fileType,
LONG* ampResult

);

C# int SaveImage (
string fileName,
string options,
int imageIndex,

);

C HRESULT IampImage_SaveImage (
BSTR fileName,
BSTR options,
BSTR fileType,
LONG* ampResult

);

JAVA int SaveImage (
String fileName,
String options,
String fileType,

);

VB SaveImage (
fileName as String,
options as String,
fileType as String,

)
as Integer;

Parameters

fileName
The name of the file that will be saved. Since only single-page bilevel images are supported, a TIF
extension is recommended.

options

A string of characters that describe optional processing for the image data during save:

B Bit-byte-reverses the image data stream. See note above. Without this option, TIFF files will be
created with Fill Order 2. With the B option, the Fill Order is set to 1.

R Format is "R=n", which sets the X and Y resolution tags in the TIFF file to n; used when the
resolution information is not already known internally or you need to override the value.

X Format is "X=n", which sets the X-resolution tag in the TIFF file to n.

Y Format is "Y=n", which sets the Y-resolution tag in the TIFF file to n.

U Format is "U=n", which sets the ResolutionUnits tag in the TIFF file to n; the default value is 2.

fileType
Specifies the file organization. It is only needed when the type cannot be determined by the file extension or by
reading the header information in the file. The supported file types are:

TIFF Tagged Image File Format file

ampResult
The error code returned.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code. An exception will be
thrown (e_NoMemory) if the system runs out of memory while allocating variables within this method. An exception will
be thrown (e_FileNotFound) if this method cannot find the directory in which to save the file. An exception will be
thrown (E_INVALIDARG) if the options, fileType or imageIndex parameters incorrect.

Remarks

This method saves the image object to an internal 65K memory buffer in TIFF G4 encoding and then writes the buffer to
disk using the specified filename.

See Also

IampImage::SaveImageToMemory

2.29. IampImage::ScaleImageToBuffer

The IampImage::ScaleImageToBuffer method scales the current image object selection and stores the result in an
image buffer.

Quick Info

See IampImage : IDispatch.

C++

HRESULT ScaleImageToBuffer (
LONG nWidth,
LONG nHeight,
LONG nBufferIndex,
LONG* ampResult

);

C# int ScaleImageToBuffer (
int nWidth,
int nHeight,
int nBufferIndex

);

C HRESULT IampImage_ScaleImageToBuffer (
LONG nWidth,
LONG nHeight,
LONG nBufferIndex,
LONG* ampResult

);

JAVA int ScaleImageToBuffer (
int nWidth,
int nHeight,
int nBufferIndex

);

VB ScaleImageToBuffer (
nWidth as Integer,
nHeight as Integer,
nBufferIndex as Integer

)
as Integer;

Parameters

nWidth
 The width, in pixels, of the scaled image.

nHeight
 The height, in pixels, of the scaled image.

nBufferIndex
 The index number of the buffer into which the scaled image will be written. Valid indices are 0 through 9.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code. AMPLib error code 47 will
be returned if the nBufferIndex parameter is outside of (0,9). An exception will be thrown (e_NoMemory) if the system
runs out of memory while allocating variables within this method.

Remarks

This method scales the current image object selection to the supplied height and width, then stores the result image in
a buffer for future retrieval. The image object is not affected by this operation.

The image object selection can be set with the IampImage::SetWindow command. If no selection is specified, the entire
image object is scaled.

See Also

IampImage::CopyImageToBuffer
IampImage::SetWindow
IampImage::PasteImageFromBuffer

2.30. IampImage::SecurityEnableAppsFile

The IampImage::SecurityEnableAppsFile method will access an OEM license file and enable licensing for the
application using the COM object.

 Quick Info

See IampImage : IDispatch.

C++ HRESULT SecurityEnableAppsFile (
BSTR LicenseFileName,
LONG ProductNumber,
BSTR UserDefName,
UINT P1,
UINT P2,
LONG* ax9Result

);

C# int SecurityEnableAppsFile (
string LicenseFileName,
int ProductNumber,
string UserDefName,
uint P1,
uint P2,

);

C HRESULT IampImage_SecurityEnableAppsFile (
BSTR LicenseFileName,
LONG ProductNumber,
BSTR UserDefName,
UINT P1,
UINT P2,
LONG* ax9Result

);

JAVA int SecurityEnableAppsFile (
String LicenseFileName,
int ProductNumber,
String UserDefName,
uint P1,
uint P2,

);

VB SecurityEnableAppsFile (
LicenseFileName as String,
ProductNumber as Integer,
UserDefName as String,
P1 as UInteger,
P2 as UInteger,

)
as Integer;

Parameters

LicenseFileName
 The folder or pathname of the license file (e.g. “C:\WINDOWS\AMP\LICENSES\”)

ProductNumber

The decimal number that matches the hex suffix in the license file name (e.g. 106 for SIPC006A).

UserDefName

The kind of license file (e.g. “AMPLIB OEM”)

P1

The first 32-bit hexadecimal code that is used to unlock the license.

P2
The second 32-bit hexadecimal code that is used to unlock the license.

ax9Result

The error/success code returned.

Return Values

If the function succeeds, the return code is 1, otherwise the return code is 0. An exception will be thrown (E_OUTOFMEMORY)
if the system runs out of memory while allocating variables within this method.

Remarks

This method will read the OEM license contained in the license file specified by LicenseFileName and ProductNumber and
if its contents match the UserDefName, P1, and P2 values, then the specified AMPLib licenses are activated for the
application using the COM object. This function is very similar to the AMPLib function ampSecurityEnableAppsFile.

 See Also

2.31. IampImage::SetRegion

The IampImage::SetRegion method sets the region of interest used for OCR-A and OCR-B recognition.

Quick Info

See IampImage : IDispatch.

C++

HRESULT SetRegion (
LONG nRegionEnable,
LONG nTopOffset,
LONG nLeftOffset,
LONG nRoiX,
LONG nRoiY,
LONG nRoiDX,
LONG nRoiDY,
LONG* ampResult

);

C# int SetRegion (
int nRegionEnable,
int nTopOffset,
int nLeftOffset,
int nRoiX,
int nRoiY,
int nRoiDX,
int nRoiDY,

);

C HRESULT IampImage_SetRegion (
LONG nRegionEnablet,
LONG nTopOffset,
LONG nLeftOffset,
LONG nRoiX,
LONG nRoiY,
LONG nRoiDX,
LONG nRoiDY,
LONG* ampResult

);

JAVA int SetRegion (
int nRegionEnablet,
int nTopOffset,
int nLeftOffset,
int nRoiX,
int nRoiY,
int nRoiDX,
int nRoiDY,

);

VB SetRegion (
nRegionEnable as Integer,
nTopOffset as Integer,
nLeftOffset as Integer,
nRoiX as Integer,
nRoiY as Integer,
nRoiDX as Integer,
nRoiDY as Integer

)
as Integer;

Parameters

nRegionEnable
 If nonzero, the following parameters are used in conjunction with the image dimensions to
 Establish a region of interest for OCR-A and OCR-B recognition using ReadMICR.

nTopOffset
 If nonzero the Roi references the top edge of the image. Otherwise the bottom edge is used.

nLeftOffset

If nonzero the Roi references the left edge of the image. Otherwise the right edge is used.

nRoiX
ROI Pixel distance from the left or right image edge.

nRoiY
ROI Pixel distance from the top or bottom image edge.

nRoiDX
Pixel width of the region of interest.

nRoiDY
Pixel height of the region of interest.

ampResult
The error code returned.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code.

Remarks

This method sets the region of interest used for OCR-A and OCR-B recognition when ReadMICR is called. If the
nRegionEnable value is 0, then ROI will default to the MICR region at the bottom of the check. Otherwise, the DX and
DY values set the width and the height of the region. The input values are used in the same way their companion
variables in the ampOCRINFO structure as described in the AMPLib manual.

See Also

IampMICR::ReadMICR

2.32. IampImage::SetWindow

The IampImage::SetWindow method sets the region of interest.

Quick Info

See IampImage : IDispatch.

C++

HRESULT SetWindow (
LONG left,
LONG top,
LONG width,
LONG height,
LONG* ampResult

);

C# int SetWindow (
int left,
int top,
int width,
int height,

);

C HRESULT IampImage_SetWindow (
LONG left,
LONG top,
LONG width,
LONG height,
LONG* ampResult

);

JAVA int SetWindow (
int left,
int top,
int width,
int height,

);

VB SetWindow (
left as Integer,
top as Integer,
width as Integer,
height as Integer

)
as Integer;

Parameters

left
 Specifies the number of pixels for the left margin of the region.

top
 Specifies the number of pixels for the top margin of the region.

width

Specifies the number of pixels for the horizontal length of the region. Any negative value will
set this value to the maximum possible.

height

Specifies the number of pixels for the vertical length of the region. Any negative value will
set this value to the maximum possible.

ampResult

The error code returned.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code.

Remarks

This method sets the region of interest. If all the values are zero, then the width and height of the region will be set to
its maximum value with a left and top value of 0. If the left and width value exceed the total width of the image, left will
be set to 0 and width to the total width of the image. If the top and height value exceed the total height of the image,

top will be set to 0 and height to the total height of the image. An exception will be thrown (e_NoImage) if this method
is called before an image is loaded.

See Also

IampImage::GetWindow

2.33. IampImage::ThresholdGrayImage

The IampImage::ThresholdGrayImage method converts a grayscale workimage into bilevel.

Quick Info

See IampImage : IDispatch.

C++

HRESULT ThresholdGrayImage (
LONG lStyle,
LONG lValue1,
LONG lValue2,
LONG* ampResult

);

C# int ThresholdGrayImage (
int lStyle,
int lValue1,
int lValue2,

);

C HRESULT IampImage_ ThresholdGrayImage (
LONG lStyle,
LONG lValue1,
LONG lValue2,
LONG* ampResult

);

JAVA int ThresholdGrayImage (
int lStyle,
int lValue1,
int lValue2,

);

VB ThresholdGrayImage (
lStyle as Integer,
lValue1 as Integer,
lValue2 as Integer,
height as Integer

)
as Integer;

Parameters

lStyle
 Specifies the overall style of thresholding that will be used: 0 - dynamic, 1 – adaptive, 3- fixed slice value.

lValue1
 If lStyle is set for dynamic thresholding (zero), then a 0 for this value should be used for optimal recognition of finer
details and 1 for more filtering of single pixel noise. Values of 2 and 3 are similar to 0 and 1 with exception that low-
pass filtering is turned off. lValue2 is used for the AdjustableBlackThreshold parameter.

If lStyle is adaptive thresholding (one), then a 0 for this value is the default and a 1 can be used to enhance fine detail.

If lStyle is set to a fixed slice value (three) then this parameter has the following values:

0 - thresholds all gray values less than 64 to black.
1 – thresholds all gray values less than 128 to black.
2 – thresholds all gray values less than 192 to black.

lValue2

This parameter should generally be set to zero.

ampResult
The error code returned.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code.

Remarks

This method thresholds an 8-bit grayscale workimage into bilevel using a number of selectable algorithms. If the image
is already bilevel, the method will exit promptly with success. An exception will be thrown (e_NoImage) if this method
is called before an image is loaded.

See Also

IampImage::DynamicThresholdGrayImage, IampImage::GetWindow

2.34. IampImage::xResolution

The IampImage::xResolution property is the horizontal resolution of the loaded image.

Quick Info

See IampImage : IDispatch.

C++ HRESULT get_xResolution (
LONG* pVal

);

C# Long xResolution

C HRESULT IampImage_get_ xResolution (
LONG* pVal

);

JAVA void get_ xResolution (
int* pVal

);

VB xResolution () as Long;

Parameters

pVal
A pointer to a variable that will receive the value.

Remarks

The xResolution of the image remains unchanged until a new image is loaded. An exception will be thrown
(e_NoImage) if the image is not loaded before accessing this property.

See Also

IampImage::yResolution

2.35. IampImage::yResolution

The IampImage::yResolution property is the vertical resolution of the loaded image.

Quick Info

See IampImage : IDispatch.

C++ HRESULT get_yResolution (

LONG* pVal
);

C# Long yResolution

C HRESULT IampImage_get_ yResolution (
LONG* pVal

);

JAVA void get_ yResolution (
int* pVal

);

VB yResolution () as Long;

Parameters

pVal
A pointer to a variable that will receive the value.

Remarks

The yResolution of the image remains unchanged until a new image is loaded. An exception will be thrown
(e_NoImage) if the image is not loaded before accessing this property.

See Also

IampImage::xResolution

3. IampBarcode: IDispatch

The IampBarcode interface provides a method for scanning barcodes in an image. It is implemented within the
ampImage class and is provided as a separate interface.

Quick Info

Header file: ampImage.h

Interface identifier: IID_IampBarcode

Pointer type: ampImage*

Vtable

Methods Descriptions

ScanBarCodes Scans the image for barcodes.

Properties Access

barHeight Read only.

barWidth Read only.

checkSum1 Read only.

checkSum2 Read only.

confidence Read only.

count Read only.

doCheckSum Write only.

filter Write only.

fixedLength Write only.

forceResolution Write only.

height Write only.

index Write only.

maxCharCount Write only.

maxScanTime Write only.

maxToScan Write only.

minLength Write only.

minPartialLength Write only.

numberTested Read only.

numberToFind Write only.

orientation Write only.

partial Read only.

partialCount Read only.

prLarge Write only.

prMedium Write only.

prSmall Write only.

quality Write only.

reversed Read only.

rotated Read only.

symbology Read only.

symbologyMask Write only.

text Read only.

width Write only.

xOrigin Read only.

yOrigin Read only.

Remarks

The IampBarcode interface inherits directly from IDispatch. The symbologyMask property must be set before calling
ScanBarCodes. The other properties will use default values specified in the following sections unless modified prior to
calling ScanBarCodes. The read only properties are only valid after calling ScanBarCodes and setting the index
property.

3.2. IampBarcode::ScanBarCodes

The IampBarcode::ScanBarCodes method scans the loaded image for barcodes.

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT ScanBarCodes (
LONG* ampResult

);

C# int ScanBarCodes (
);

C HRESULT IampBarCodes_ScanBarCodes (
LONG* ampResult

;

JAVA int ScanBarCodes (
);

VB ScanBarCodes (
)

as Integer;

Parameters

ampResult
The error code returned. Error codes are defined in Appendix A.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code.

Remarks

The image must be loaded and the symbologyMask property must be set prior to scanning the barcodes in an image.
An exception will be thrown (e_SymbologyMaskNotSet) if this method is called prior to setting the mask. All other
properties have default values as described in the respective sections. Once ScanBarCodes has been called, the
number of barcodes found can be accessed through the count property. The information for each barcode can then be
accessed after setting the index property. An exception will be thrown (e_NoMemory) if the system runs out of
memory while allocating variables within this method.

See Also

IampBarcode::symbologyMask, IampBarcode::count, IampBarcode::index, Appendix A

3.3. IampBarcode::barHeight

The IampBarcode::barHeight property is the height in pixels of the scanned barcode.

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT get_barHeight (
LONG* pVal

);

C# int barHeight

C HRESULT IampBarcode_get_barHeight (
LONG* pVal

);

JAVA void get_barHeight (
int* pVal

);

VB barHeight () as Integer;

Parameters

pVal
A pointer to a variable that will receive the value.

Remarks

This property is only available after calling IampBarcode::ScanBarCodes and setting the IampBarcode::index
property. An exception will be thrown (e_BarcodesNotScanned) if this property is accessed before calling
ScanBarCodes.

See Also

IampBarcode::ScanBarCodes, IampBarcode::index

3.4. IampBarcode::barWidth

The IampBarcode::barWidth property is the width in pixels of the scanned barcode.

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT get_barWidth (
LONG* pVal

);

C# int barWidth

C HRESULT IampBarcode_get_barWidth (
LONG* pVal

);

JAVA void get_barWidth (
int* pVal

);

VB barWidth () as Integer;

Parameters

pVal
A pointer to a variable that will receive the value.

Remarks

This property is only available after calling IampBarcode::ScanBarCodes and setting the IampBarcode::index
property. An exception will be thrown (e_BarcodesNotScanned) if this property is accessed before calling
ScanBarCodes.

See Also

IampBarcode::ScanBarCodes, IampBarcode::index

3.5. IampBarcode::checkSum1

The IampBarcode::checkSum1 property is the checksum of the scanned barcode.

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT get_checkSum1 (
LONG* pVal

);

C# int checkSum1

C HRESULT IampBarcode_get_checkSum1 (
LONG* pVal

);

JAVA void get_checkSum1 (
int* pVal

);

VB checkSum1 () as Integer;

Parameters

pVal
A pointer to a variable that will receive the value.

Remarks

This property is only available after calling IampBarcode::ScanBarCodes and setting the IampBarcode::index
property. An exception will be thrown (e_BarcodesNotScanned) if this property is accessed before calling
ScanBarCodes.

See Also

IampBarcode::ScanBarCodes, IampBarcode::index

3.6. IampBarcode::checkSum2

The IampBarcode::checkSum2 property is the second checksum of the scanned barcode. Some barcodes have two
checksum values.

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT get_checkSum2 (
LONG* pVal

);

C# int checkSum2

C HRESULT IampBarcode_get_checkSum2 (
LONG* pVal

);

JAVA void get_checkSum2 (
int* pVal

);

VB CheckSum2 () as Integer;

Parameters

pVal
A pointer to a variable that will receive the value.

Remarks

This property is only available after calling IampBarcode::ScanBarCodes and setting the IampBarcode::index
property. An exception will be thrown (e_BarcodesNotScanned) if this property is accessed before calling
ScanBarCodes.

See Also

IampBarcode::ScanBarCodes, IampBarcode::index

3.7. IampBarcode::confidence

The IampBarcode::confidence property is a value between 0 (low) and 100 (high) which indicates the possible
accuracy of the scanned barcode. Barcodes can be successfully scanned even though the confidence value is low.

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT get_confidence (

LONG* pVal
);

C# int confidence

C HRESULT IampBarcode_get_confidence (
LONG* pVal

);

JAVA void get_confidence (
int* pVal

);

VB confidence () as Integer;

Parameters

pVal
A pointer to a variable that will receive the value.

Remarks

This property is only available after calling IampBarcode::ScanBarCodes and setting the IampBarcode::index
property. An exception will be thrown (e_BarcodesNotScanned) if this property is accessed before calling
ScanBarCodes.

See Also

IampBarcode::ScanBarCodes, IampBarcode::index

3.8. IampBarcode::count

The IampBarcode::count property is the number of valid and partial barcodes that were scanned.

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT get_count (
LONG* pVal

);

C# int count

C HRESULT IampBarcode_get_count (
LONG* pVal

);

JAVA void get_count (
int* pVal

);

VB count () as Integer;

Parameters

pVal
A pointer to a variable that will receive the value.

Remarks

This property is only available after calling IampBarcode::ScanBarCodes. An exception will be thrown
(e_BarcodesNotScanned) if this property is accessed before calling ScanBarCodes.

See Also

IampBarcode::ScanBarCodes, IampBarcode::index, IampBarcode::minPartialLength

3.9. IampBarcode::doCheckSum

The IampBarcode::doCheckSum property enables checksum verification for barcode data when such verification is
optional for the symbology.

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT put_doCheckSum (

VARIANT_BOOL newVal
);

C# bool doCheckSum

C HRESULT IampBarcode_put_doCheckSum (
VARIANT_BOOL newVal

);

JAVA void set_doCheckSum (
boolean newVal

);

VB doCheckSum () as Boolean;

Parameters

newVal
True or False. If newVal set to true, the AIM standard checksum algorithm is performed. If the checksum fails
validation, the barcode will not be reported as a successful scan.

Remarks

The default value for this property is false. If checksum verification is enabled, the resulting data will not include the
checksum character(s). If the minLength property is too low, the entire barcode will not be reported.

See Also

IampBarcode::ScanBarCodes, IampBarcode::minLength

3.10. IampBarcode::filter

The IampBarcode::filter property specifies whether spot filtering should be applied to the barcode image before
scanning.

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT put_filter (

LONG newVal
);

C# int filter

C HRESULT IampBarcode_put_filter (
LONG newVal

);

JAVA void set_filter (
int newVal

);

VB filter () as Integer;

Parameters

newVal
If newVal = 0, no filtering will occur. If newVal = 1, a 1x1 spot filter will be applied. If newVal = 2, a 2x1 spot
filter will be used. For bilevel Data Matrix, Aztec, and QR images: newVal = 1 is a MAJOR 70 filter, newVal = 2 is a
DILATE WEAK filter, newVal = 3 is an ERODE WEAK filter. For bilevel and grayscale QR images a newVal = 4 is a
median filter. For grayscale QR images any newVal from 1 through 3 will perform a median filter.

Remarks

The default value for this property is 0 (no filtering). An exception will be thrown (E_INVALIDARG) if the new value
is not one of these five.

See Also

IampBarcode::ScanBarCodes

3.11. IampBarcode::fixedLength

The IampBarcode::fixedLength property forces the scanned barcodes to be the exact number of characters specified
by the IampBarcode::minLength property.

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT put_fixedLength (

VARIANT_BOOL newVal
);

C# bool fixedLength

C HRESULT IampBarcode_put_fixedLength (
VARIANT_BOOL newVal

);

JAVA void set_fixedLength (
boolean newVal

);

VB fixedLength () as Boolean;

Parameters

newVal
True or False. If newVal is false, variable length barcodes are allowed and must be greater in length than the
IampBarcode::minLength property. If newVal is true, only barcodes which are exactly
IampBarcode::minLength characters will be reported as successfully scanned.

Remarks

The default value for this property is false.

See Also

IampBarcode::ScanBarCodes, IampBarcode::minLength, IampBarcode::doCheckSum

3.12. IampBarcode::forceResolution

The IampBarcode::forceResolution property allows the application to override the image resolution.
In AmpLibNet, this property is called forceBarcodeResolution.

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT put_forceResolution (

LONG newVal
);

C# int forceResolution

C HRESULT IampBarcode_put_forceResolution (
LONG newVal

);

JAVA void set_forceResolution (
int newVal

);

VB forceResolution () as Integer;

Parameters

newVal
If newVal = 0, the resolution of the image is used; provided the image file contains this information. If newVal > 0,
the value specified by this property will be used as the image resolution for scanning the barcodes. If newVal < 0,
an estimated resolution will be calculated and used for scanning.

Remarks

The default value for this property is 0.

See Also

IampBarcode::ScanBarCodes

3.13. IampBarcode::height

The IampBarcode::height property specifies the height of barcodes to be scanned in thousandths of an inch.

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT put_height (
LONG newVal

);

C# int height

C HRESULT IampBarcode_put_height (
LONG newVal

);

JAVA void set_height (
int newVal

);

VB height () as Integer;

Parameters

newVal
If newVal = 0, this property is ignored. If this property is > 0, the specified value is thousandths of an inch.

Remarks

The default value for this property is 0. Only use this property if the size of the barcodes to be scanned can be
approximated. When used with the prLarge, prMedium and prSmall properties, a variety of barcode sizes can be
scanned.

See Also

IampBarcode::ScanBarCodes, IampBarcode::width, IampBarcode::prLarge, IampBarcode::prMedium,
IampBarcode::prSmall

3.14. IampBarcode::index

The IampBarcode::index property specifies which barcode, of the scanned set of barcodes, will be accessed through
the read-only properties.

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT put_index (

LONG newVal
);

C# int index

C HRESULT IampBarcode_put_index (
LONG newVal

);

JAVA void set_index (
int newVal

);

VB index () as Integer;

Parameters

newVal
The range of values for newVal are 0 to n, where n is less than the IampBarcode::count property.

Remarks

In cases where barcode scanning may report more than one barcode in a single image, use this property to “select”
which barcode will be accessed. This property must be set after calling the IampBarcode::ScanBarCodes method
and before any properties relating to individual barcodes may be used. An exception will be thrown
(e_BarcodesNotScanned) if ScanBarCodes has not been called before setting this property. An exception will be
thrown (E_INVALIDARG) if the new value is out of range. An exception will be thrown (E_ABORT) if the barcode
data specified by the index property cannot be accessed. The message reported in the exception will contain the
internal error code.

See Also

IampBarcode::ScanBarCodes, IampBarcode::count

3.15. IampBarcode::maxCharCount

The IampBarcode::maxCharCount property specifies the maximum number of characters to expect as a result of
scanning all the barcodes in a single image.

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT put_maxCharCount (

LONG newVal
);

C# int maxCharCount

C HRESULT IampBarcode_put_maxCharCount (
LONG newVal

);

JAVA void set_maxCharCount (
int newVal

);

VB maxCharCount () as Integer;

Parameters

newVal
This property

Remarks

The default value for this property is 200 and must be larger than the expected total number of characters of all the
scanned barcodes in a single image. Some barcode symbologies (PDF 417) are very dense and may contain up to
20,000 characters. As a rule, set this property at least as big as numberToFind * minLength plus some
additional space for partial barcode scans.

See Also

IampBarcode::ScanBarCodes, IampBarcode::numberToFind, IampBarcode::minLength

3.16. IampBarcode::maxScanTime

The IampBarcode::maxScanTime property specifies an upper time limit in hundredths of seconds which may be used
when processing barcodes on the image.

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT put_maxScanTime (

LONG newVal
);

C# int maxScanTime

C HRESULT IampBarcode_put_maxScanTime (
LONG newVal

);

JAVA void set_maxScanTime (
int newVal

);

VB maxScanTime () as Integer;

Parameters

newVal
This property establishes the maximum amount of processing time which the computer will spend processing
barcodes on the image. The units for this property are hundredths of a second, so for example, the value 400 would
be treated as 4.00 seconds.

Remarks

The default value for this property is 200.

See Also

IampBarcode::ScanBarCodes

3.17. IampBarcode::maxToScan

The IampBarcode::maxToScan property specifies the maximum number of valid and partial barcodes which may be
scanned and reported in a single image.

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT put_maxToScan (

LONG newVal
);

C# int maxToScan

C HRESULT IampBarcode_put_maxToScan (
LONG newVal

);

JAVA void set_maxToScan (
int newVal

);

VB maxToScan () as Integer;

Parameters

newVal
This property must be larger than the IampBarcode::numberToFind property.

Remarks

The default value for this property is 100.

See Also

IampBarcode::ScanBarCodes, IampBarcode::numberToFind, IampBarcode::minPartialLength, IampBarcode::count

3.18. IampBarcode::minLength

The IampBarcode::minLength property specifies the minimum length barcodes must be before being considered
valid.

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT put_minLength (

LONG newVal
);

C# int minLength

C HRESULT IampBarcode_put_minLength (
LONG newVal

);

JAVA void set_minLength (
int newVal

);

VB minLength () as Integer;

Parameters

newVal
This property must be greater than zero.

Remarks

The default value for this property is 1. If the IampBarcode::fixedLength property is set to true, then the
barcode must contain exactly the number of characters specified by this property to be considered valid. If the
property IampBarcode::doCheckSum is set to true, the checksum character(s) will be removed from the data
and will not be counted in the length of the barcode. An exception will be thrown (E_INVALIDARG) if the new value
is < 1.

See Also

IampBarcode::ScanBarCodes, IampBarcode::doChecksum, IampBarcode::fixedLength

3.19. IampBarcode::minPartialLength

The IampBarcode::minPartialLength property specifies the minimum number of characters that must be valid to
report a partial read of a barcode.

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT put_minPartialLength (

LONG newVal
);

C# int minPartialLength

C HRESULT IampBarcode_put_minPartialLength (
LONG newVal

);

JAVA void set_minPartialLength (
int newVal

);

VB minPartialLength () as Integer;

Parameters

newVal
If newVal = 0, no partial reads will be reported. If newVal > 0, partial reads will be considered valid if the number
of scanned characters is greater or equal to this property.

Remarks

The default value for this property is 0. Partial reads do not count towards meeting the
IampBarcode::numberToFind requirement. They do count against the IampBarcode::maxToScan property.
When analyzing the barcode properties for scanned barcodes, the IampBarcode::partial property indicates if the
barcode data is from a partial scan. An exception will be thrown (E_INVALIDARG) if the new value is < 0.

See Also

IampBarcode::ScanBarCodes, IampBarcode::numberToFind, IampBarcode::maxToScan, IampBarcode::partial

3.20. IampBarcode::numberTested

The IampBarcode::numberTested property is a value which indicates the number of objects in the image that were
scanned as possible barcodes.

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT get_numberTested (

LONG* pVal
);

C# int numberTested

C HRESULT IampBarcode_get_numberTested (
LONG* pVal

);

JAVA void get_numberTested (
int* pVal

);

VB numberTested () as Integer;

Parameters

pVal
A pointer to a variable that will receive the value.

Remarks

This property is only available after calling IampBarcode::ScanBarCodes. An exception will be thrown
(e_BarcodesNotScanned) if this property is accessed before calling ScanBarCodes.

See Also

IampBarcode::ScanBarCodes

3.21. IampBarcode::numberToFind

The IampBarcode::numberTofind property specifies how many valid barcodes to report.

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT put_numberToFind (
LONG newVal

);

C# int numberToFind

C HRESULT IampBarcode_put_numberToFind (
LONG newVal

);

JAVA void set_numberToFind (
int newVal

);

VB numberToFind () as Integer;

Parameters

newVal
Valid values for newVal are >= 0.

Remarks

The default value for this property is 0. If the property is set to 0, all valid barcodes on the image will be reported.
If the property is > 0, scanning will continue until the specified number of valid barcodes is found or no more
barcodes can be found. An exception will be thrown (E_INVALIDARG) if the new value is < 0.

See Also

IampBarcode::ScanBarCodes

3.22. IampBarcode::orientation

The IampBarcode::orientation property specifies how the barcodes to be scanned are arranged on the image.

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT put_orientation (
LONG newVal

);

C# int orientation

C HRESULT IampBarcode_put_orientation (
LONG newVal

);

JAVA void set_orientation (
int newVal

);

VB orientation () as Integer;

Parameters

newVal
0 Scan only horizontal barcodes
1 Scan only vertical barcodes
2 Scan both horizontal and vertical barcodes
3 Scan only horizontal barcodes with significant skew
4 Scan only vertical barcodes with significant skew
5 Scan both horizontal and vertical barcodes with significant skew

Remarks

The default value for this property is 0. Horizontal is defined as the vertical bars being perpendicular to the x-axis
of the image. Values 0-2 will scan for barcodes with less than a normal amount of skew; generally 10 to 15
degrees. Values 3-5 scan for all barcodes. Knowing the orientation of the barcodes to be scanned can reduce
execution times of the scans. An exception will be thrown (E_INVALIDARG) if the new value is not one of these six.

See Also

IampBarcode::ScanBarCodes

3.23. IampBarcode::partial

The IampBarcode::partial property indicates the barcode data is an incomplete scan.
In AmpLibNet, this property is called partial_.

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT get_partial (

VARIANT_BOOL* pVal
);

C# bool partial

C HRESULT IampBarcode_get_partial (
VARIANT_BOOL* pVal

);

JAVA void get_partial (
Boolean* pVal

);

VB partial () as Boolean;

Parameters

pVal
A pointer to a variable that will receive the value.

Remarks

This property is only available after calling IampBarcode::ScanBarCodes and setting the IampBarcode::index
property. An exception will be thrown (e_BarCodesNotScanned) if this property is access prior to calling
ScanBarcodes.

See Also

IampBarcode::ScanBarCodes, IampBarcode::index

3.24. IampBarcode::partialCount

The IampBarcode::partialCount property is a value which indicates the number of objects in the image that were
partially decoded.

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT get_partialCount (

LONG* pVal
);

C# int partialCount

C HRESULT IampBarcode_get_partialCount (
LONG* pVal

);

JAVA void get_partialCount (
int* pVal

);

VB partialCount () as Integer;

Parameters

pVal
A pointer to a variable that will receive the value.

Remarks

This property is only available after calling IampBarcode::ScanBarCodes and setting the IampBarcode::index
property. Text and other objects that are not barcodes may partially decode and return unexpected results. Use this
property to decide whether the data is valid for the application. An exception will be thrown (e_BarcodesNotScanned) if
this property is accessed before calling ScanBarCodes.

See Also

IampBarcode::ScanBarCodes, IampBarcode::index

3.25. IampBarcode::prLarge

The IampBarcode::prLarge property specifies the priority of scanning for large barcodes on the image. Large
barcodes are defined as a 4.0-inch wide by 0.9-inch high barcode.

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT put_prLarge (

LONG newVal
);

C# int prLarge

C HRESULT IampBarcode_put_prLarge (
LONG newVal

);

JAVA void set_prLarge (
int newVal

);

VB prLarge () as Integer;

Parameters

newVal
The valid values are 0-3.

Remarks

The default value for this property is 3. If non-zero values are given for properties IampBarcode::width and
IampBarcode::height, barcodes with the size specified by those two properties will be scanned first. If this
property is set to zero, barcodes of this size will not be scanned. Each priority setting (prLarge, prMedium and
prSmall) should be unique unless set to zero. Do not set all the priority and IampBarcode::width and
IampBarcode::height properties to zero. An invalid argument error (47) will occur when ScanBarcodes is called.
An exception will be thrown (E_INVALIDARG) if the new value is not 0-3 or not unique.

See Also

IampBarcode::ScanBarCodes, IampBarcode::prMedium, IampBarcode::prSmall, IampBarcode::width,
IampBarcode::height

3.26. IampBarcode::prMedium

The IampBarcode::prMedium property specifies the priority of scanning for medium barcodes on the image. Medium
barcodes are defined as a 1.7-inch wide by 0.5-inch high barcode.

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT put_prMedium (
LONG newVal

);

C# int prMedium

C HRESULT IampBarcode_put_prMedium (
LONG newVal

);

JAVA void set_prMedium (
int newVal

);

VB prMedium () as Integer;

Parameters

newVal
The valid values are 0-3.

Remarks

The default value for this property is 2. If non-zero values are given for properties IampBarcode::width and
IampBarcode::height, barcodes with the size specified by those two properties will be scanned first. If this
property is set to zero, barcodes of this size will not be scanned. Each priority setting (prLarge, prMedium and
prSmall) should be unique unless set to zero. Do not set all the priority and IampBarcode::width and
IampBarcode::height properties to zero. An invalid argument error (47) will occur. An exception will be thrown
(E_INVALIDARG) if the new value is not 0-3 or not unique.

See Also

IampBarcode::ScanBarCodes, IampBarcode::prLarge, IampBarcode::prSmall, IampBarcode::width,
IampBarcode::height

3.27. IampBarcode::prSmall

The IampBarcode::prSmall property specifies the priority of scanning for small barcodes on the image. Small
barcodes are defined as a 0.9-inch wide by 0.25-inch high barcode.

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT put_prSmall (

LONG newVal
);

C# int prSmall

C HRESULT IampBarcode_put_prSmall (
LONG newVal

);

JAVA void set_prSmall (
int newVal

);

VB prSmall () as Integer;

Parameters

newVal
The valid values are 0-3.

Remarks

The default value for this property is 1. If non-zero values are given for properties IampBarcode::width and
IampBarcode::height, barcodes with the size specified by those two properties will be scanned first. If this
property is set to zero, barcodes of this size will not be scanned. Each priority setting (prLarge, prMedium and
prSmall) should be unique unless set to zero. Do not set all the priority and IampBarcode::width and
IampBarcode::height properties to zero. An invalid argument error (47) will occur. An exception will be thrown
(E_INVALIDARG) if the new value is not 0-3 or not unique.

See Also

IampBarcode::ScanBarCodes, IampBarcode::prLarge, IampBarcode::prMedium, IampBarcode::width,
IampBarcode::height

3.28. IampBarcode::quality

The IampBarcode::quality property specifies how hard the scanning process will try to decode barcodes.

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT put_quality (
LONG newVal

);

C# int quality

C HRESULT IampBarcode_put_quality (
LONG newVal

);

JAVA void set_quality (
int newVal

);

VB quality () as Integer;

Parameters

newVal
The valid values are 0-10.

Remarks

The default value for this property is 1. This property indicates, to the scanning process, the quality of the image to
be scanned. Low numbers are for low quality images and the scanning process will try harder to decode valid
barcodes. Higher numbers are for better quality images and the scanning process will tighten the criteria for
reporting valid barcodes. These are some guidelines for image quality:

1 FAX input
4 Microfilm scan
7 Second generation copy
10 First generation print

An exception will be thrown (E_INVALIDARG) if the new value is not 0-10.

See Also

IampBarcode::ScanBarCodes

3.29. IampBarcode::reversed

The IampBarcode::reversed property indicates the direction the barcode was scanned.

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT get_reversed (
VARIANT_BOOL* pVal

);

C# bool reversed

C HRESULT IampBarcode_get_reversed (
VARIANT_BOOL* pVal

);

JAVA void get_reversed (
Boolean* pVal

);

VB reversed () as Boolean;

Parameters

pVal
A pointer to a variable that will receive the value.

Remarks

This property is only available after calling IampBarcode::ScanBarCodes and setting the IampBarcode::index
property. An exception will be thrown (e_BarcodesNotScanned) if this property is accessed before calling
ScanBarCodes.

See Also

IampBarcode::ScanBarCodes, IampBarcode::index

3.30. IampBarcode::rotated

The IampBarcode::rotated property indicates the direction the barcode was scanned.

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT get_rotated (
VARIANT_BOOL* pVal

);

C# bool rotated

C HRESULT IampBarcode_get_rotated (
VARIANT_BOOL* pVal

);

JAVA void get_rotated (
Boolean* pVal

);

VB rotated () as Boolean;

Parameters

pVal
A pointer to a variable that will receive the value.

Remarks

This property is only available after calling IampBarcode::ScanBarCodes and setting the IampBarcode::index
property. An exception will be thrown (e_BarcodesNotScanned) if this property is accessed before calling
ScanBarCodes.

See Also

IampBarcode::ScanBarCodes, IampBarcode::index

3.31. IampBarcode::symbology

The IampBarcode::symbology property is a value which indicates the type of barcode that was scanned.

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT get_symbology (
LONG* pVal

);

C# int symbology

C HRESULT IampBarcode_get_symbology (
LONG* pVal

);

JAVA void get_symbology (
int* pVal

);

VB symbology () as Integer;

Parameters

pVal
A pointer to a variable that will receive the value.

Remarks

This property is only available after calling IampBarcode::ScanBarCodes and setting the IampBarcode::index
property. The property will be one of the enumerated values in Appendix B. ????? Need list of the symbologies in
Appendix B and a link there. An exception will be thrown (e_BarcodesNotScanned) if this property is accessed before
calling ScanBarCodes.

See Also

IampBarcode::ScanBarCodes, IampBarcode::index

3.32. IampBarcode::symbologyMask

The IampBarcode::symbologyMask property specifies which barcode symbologies the scanning process will attempt
to decode.

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT put_symbologyMask (
LONG newVal

);

C# int symbologyMask

C HRESULT IampBarcode_put_symbologyMask (
LONG newVal

);

JAVA void set_symbologyMask (
int newVal

);

VB symbologyMask () as Integer;

Parameters

newVal
The valid values are in Appendix B. To select more than one barcode symbology, use a sum of the values. ?????
Need to link to Appendix B.

Remarks

The default value for this property is 0 and is invalid. This property must be set prior to calling the
IampBarcode::ScanBarCodes method. Some symbologies are incompatible when selected at the same time.
EAN_13 is a superset of UPC_A and barcodes will always decode as EAN_13 instead of UPC_A. An exception will be
thrown (e_InvalidSymbology) if the new mask is invalid.

See Also

IampBarcode::ScanBarCodes

3.33. IampBarcode::text

The IampBarcode::text property is a string property which contains the characters of barcode that was scanned.
????? Do I need a charct property in case barcodes CONTAIN a NULL character?

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT get_text (

BSTR* pVal
);

C# String text

C HRESULT IampBarcode_get_text (
BSTR* pVal

);

JAVA void get_text (
java.lang.String* pVal

);

VB text () as Integer;

Parameters

pVal
A pointer to a variable that will receive the value.

Remarks

This property is only available after calling IampBarcode::ScanBarCodes and setting the IampBarcode::index
property. An exception will be thrown (e_BarcodesNotScanned) if this property is accessed before calling
ScanBarCodes. An exception will be thrown (e_BarcodeTextEmpty) if there is no barcode text to return. An exception
will be thrown (e_NoMemory) if the system runs out of memory while allocating memory for variables within this
method.

See Also

IampBarcode::ScanBarCodes, IampBarcode::index

3.34. IampBarcode::width

The IampBarcode::width property specifies the width of barcodes to be scanned in thousandths of an inch.

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT put_width (
LONG newVal

);

C# int width

C HRESULT IampBarcode_put_width (
LONG newVal

);

JAVA void set_width (
int newVal

);

VB width () as Integer;

Parameters

newVal
If newVal = 0, this property is ignored. If this property is > 0, the specified value is thousandths of an inch.

Remarks

The default value for this property is 0. Only use this property if the size of the barcodes to be scanned can be
approximated. When used with the prLarge, prMedium and prSmall properties, a variety of barcode sizes can be
scanned.

See Also

IampBarcode::ScanBarCodes, IampBarcode::height, IampBarcode::prLarge, IampBarcode::prMedium,
IampBarcode::prSmall

3.35. IampBarcode::xOrigin

The IampBarcode::symbology property is a value in pixels which indicates the left point of origin of the scanned
barcode on the image.

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT get_xOrigin (

LONG* pVal
);

C# int xOrigin

C HRESULT IampBarcode_get_xOrigin (
LONG* pVal

);

JAVA void get_xOrigin (
int* pVal

);

VB xOrigin () as Integer;

Parameters

pVal
A pointer to a variable that will receive the value.

Remarks

This property is only available after calling IampBarcode::ScanBarCodes and setting the IampBarcode::index
property. xOrigin and yOrigin can be used to identify where on the scanned image the barcode is located and can be
used to determine the meaning of the data when multiple barcodes are expected to be scanned on a single image. If a
region of interest is specified using the IampImage::SetWindow method, then the values are relative to the region
and not to the entire image. An exception will be thrown (e_BarcodesNotScanned) if this property is accessed before
calling ScanBarCodes.

See Also

IampBarcode::ScanBarCodes, IampBarcode::index, IampBarcode::yOrigin, IampImage::SetWindow

3.36. IampBarcode::yOrigin

The IampBarcode::yOrigin property is a value in pixels which indicates the top point of origin of the scanned barcode
on the image.

Quick Info

See IampBarcode : IDispatch.

C++ HRESULT get_yOrigin (

LONG* pVal
);

C# int yOrigin

C HRESULT IampBarcode_get_yOrigin (
LONG* pVal

);

JAVA void get_yOrigin (
int* pVal

);

VB yOrigin () as Integer;

Parameters

pVal
A pointer to a variable that will receive the value.

Remarks

This property is only available after calling IampBarcode::ScanBarCodes and setting the IampBarcode::index
property. xOrigin and yOrigin can be used to identify where on the scanned image the barcode is located and can be

used to determine the meaning of the data when multiple barcodes are expected to be scanned on a single image. If a
region of interest is specified using the IampImage::SetWindow method, then the values are relative to the region
and not to the entire image. An exception will be thrown (e_BarcodesNotScanned) if this property is accessed before
calling ScanBarCodes.

See Also

IampBarcode::ScanBarCodes, IampBarcode::index, IampBarcode::xOrigin, IampImage::SetWindow

4. IampMICR: IDispatch

The IampMICR interface provides a method for reading the MICR line on scanned check images. It is implemented
within the ampImage class and is provided as a separate interface.

Quick Info

Header file: ampImage.h

Interface identifier: IID_IampMICR

Pointer type: ampImage*

Vtable

Methods Descriptions

AssembleMICR Assembles a MICR string from components.

DetectCoupon Detects and reads remittance coupons.

ReadCamera Read the MICR line from camera check images
with output of formatted thresholded images.

ReadCameraEx Read the MICR line from camera check images
with output of formatted thresholded images
and formatted grayscale images.

ReadMICR Reads the MICR, OCR-A, or OCR-B line in the
image.

ReadMICRPage Reads the MICR line in the image and returns
the region where it is located.

ReadScanner Read the MICR line from full-page scanned
check images and isolates the check image.

FormatMICRFields Formats a MICR string.

GetMoreReadCameraResults Gets additional ReadCamera status results

GetReadCameraResults Gets ReadCamera status results.

GetReadScannerResults Gets ReadScanner status results.

GetFieldVerifyResultData Gets engine information after a Verify
operation.

GetFieldVerifyResultMinConf Gets MICR field confidence minima after a
Verify operation.

getMICRData Gets character-specific information after a
MICR read operation.

getMICRFields Extracts components from a MICR string.

getMICRRegion Returns MICR region pixel boundaries.

getRemitAlternateAmount Returns a low-confidence alternative
remittance amount.

getRemitAlternateCheckNumber Returns a low-confidence alternative
remittance check number.

getRemitAlternateDate Returns a low-confidence alternative
remittance date.

getRemitAmountConfidence Returns the remittance amount confidence
value.

getRemitAmountRegion Returns remittance amount region pixel
boundaries.

getRemitCheckNumberConfidence Returns the remittance check number
confidence value.

getRemitCheckNumberRegion Returns remittance check number region pixel
boundaries.

getRemitCheckRegion Returns remittance check region pixel
boundaries.

getRemitDateConfidence Returns the remittance date confidence value.

getRemitDateRegion Returns remittance date region pixel
boundaries.

getVerifyMICRData Gets character-specific information after a
MICR Verify operation.

PrepareCouponImage Crops and deskews coupon, check, and other
various types of images.

PrepareMICRImage Crops and deskews a check shaped image.

ReadMICRRemit Reads a remittance document.

SetAppDirectory Specifies the install directory containing
“storage.dat”.

SetBottomCropDistance Distance, in inches, from the bottom of the
image to ignore during MICR reading.

SetComboMode Runs MICR reading without enhancements,
then reads with enhancements only if fewer
than comboChars characters are scanned
successfully.

SetDo180 Specifies whether to check for upside down
MICR images.

SetDoImagePrep Sets image deskewing and border removal.

SetDoImageRepair Sets special image enhancements; usually off.

SetDoImageUpdate Sets whether to update the image object with
user-selected image enhancements.

SetDoPrescale Sets whether to prescale images.

SetDoRepair Sets whether to repair degraded characters.

SetFieldVerifyMinConf Sets the minimum successful confidence value
for MICR fields during a Verify operation.

SetImageFilter Sets the image filter to use.

SetMICRCode Sets the MICR code type.

SetMICRMinConf Sets the minimum acceptable character
confidence score.

SetMICRRules Sets the type of MICR rules.

SetNoBlanks Sets whether to report MICR blanks.

SetNoRules Sets whether to ignore MICR rules.

SetOCRAEnable Configures OCR-A reading settings.

SetOCRBEnable Configures OCR-B reading settings.

SetResolution Sets image resolution determination method.

SetRotate Sets image rotation.

SetTimeout Sets maximum allowed scan time, in seconds.

VerifyMICR Verifies characters from a previously-read
MICR line.

VerifyMICRField Verifies fields from a previously-read MICR line.

Properties Access

enableCameraMode Read/Write.

enableFullPage Read/Write.

enableScannerMode Read/Write.

done180 Read only.

doneCombo Read only.

doneImageUpdate Read only.

doneRepair Read only.

enableReadRemit Read/Write.

OCRCode Read/Write.

skew Read only.

Remarks

The IampMICR interface inherits directly from IDispatch. The symbologyMask property must be set before calling
ReadMICR. The other properties will use default values specified in the following sections unless modified prior to
calling ReadMICR. The read only properties are only valid after calling ReadMICR and setting the index property.

4.2. IampMICR::ReadCamera

The IampMICR::ReadCamera method uses special grayscale image processing to read the MICR line in check images
that come from cameras and produces bilevel 200 dpi output images.

Quick Info

See IampMICR : IDispatch.

C++ HRESULT ReadCamera (

LONG nFrontInputImage,
LONG nBackInputImage,
LONG nFrontOutputImage,
LONG nBackOutputImage,
BSTR options,
BSTR* pszMICR,
LONG* nCount,
LONG* ampResult

);

C# int ReadCamera (
int nFrontInputImage,
int nBackInputImage,
int nFrontOutputImage,
int nBackOutputImage
string options,
out string pszMICR,
out int nCount

);

C HRESULT IampMICR_ReadCamera (
LONG nFrontInputImage,
LONG nBackInputImage,
LONG nFrontOutputImage,
LONG nBackOutputImage,
BSTR options,
BSTR* pszMICR,
LONG* nCount,
LONG* ampResult

);

JAVA int ReadCamera (
int nFrontInputImage,
int nBackInputImage,
int nFrontOutputImage,
int nBackOutputImage,
String options,
String outputMICR,
int outputCount

);

VB ReadCamera (
nFrontInputImage as Integer,
nBackInputImage as Integer,
nFrontOutputImage as Integer,
nBackOutputImage as Integer,
options as String,
pszMICR as String,
nCount as Integer

)
as Integer;

Parameters

nFrontInputImage

The image buffer 0-9 to use as the source image for the front of the check. A value of -1 will cause the contents of
the main image property to be used. The source image must be grayscale.

nBackInputImage
The image buffer 0-9 to use as the source image for the back of the check. A value of -1 tells the method there is
no back image to use.

nFrontOutputImage
The image buffer 0-9 to use as the destination image for the dewarped, resized, and thresholded front check
image. A value of -1 tells the method that no output front image is needed.

nBackOutputImage
The image buffer 0-9 to use as the destination image for the dewarped, resized, and thresholded back check
image. A value of -1 tells the method that no output back image is needed.

options
A string of single character commands that select cropping (C), trapezoidal warp detection and correction (T), 180
degree rotation detection and correction (R), blank suppression disable (B), and confidence processing (M=nn
where nn defaults to 85). The default values for CTRB are off. Use the “C” option if the input image has not been
previously cropped and corrected. Use the “T” option for camera images or if the source is unknown. The “T” option
is not required for page scanner images

pszMICR
The string of MICR characters recognized from the selected front check.

nCount
The number of MICR characters recognized.

ampResult
The error code returned. Error codes are defined in Appendix A.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code.

Remarks

The selected input image(s) must be loaded prior to reading MICR characters. Once ReadCamera has been called, the
number of characters found can be accessed through the nCount value. The MICR characters for the image can be
accessed through the pszMICR value. An exception will be thrown (e_NoMemory) if the system runs out of memory
while allocating variables within this method.

See Also

Appendix A

4.3. IampMICR::ReadCameraEx

The IampMICR::ReadCameraEx method uses special grayscale image processing to read the MICR line in check
images that come from cameras and produces bilevel and grayscale 200 dpi output images.

Quick Info

See IampMICR : IDispatch.

C++ HRESULT ReadCamera (

LONG nFrontInputImage,
LONG nBackInputImage,
LONG nFrontOutputImage,
LONG nBackOutputImage,
BSTR options,
BSTR* pszMICR,
LONG* nCount,
LONG nFrontOutputGrayImage,
LONG nBackOutputGrayImage,
LONG* ampResult

);

C# int ReadCamera (
int nFrontInputImage,
int nBackInputImage,
int nFrontOutputImage,
int nBackOutputImage
string options,
out string pszMICR,
out int nCount
int nFrontOutputGrayImage,
int nBackOutputGrayImage

);

C HRESULT IampMICR_ReadCamera (
LONG nFrontInputImage,
LONG nBackInputImage,
LONG nFrontOutputImage,
LONG nBackOutputImage,
BSTR options,
BSTR* pszMICR,
LONG* nCount,
LONG nFrontOutputGrayImage,
LONG nBackOutputGrayImage,
LONG* ampResult

);

JAVA int ReadCamera (
int nFrontInputImage,
int nBackInputImage,
int nFrontOutputImage,
int nBackOutputImage,
String options,
String outputMICR,
int outputCount
int nFrontOutputGrayImage,
int nBackOutputGrayImage,

);

VB ReadCamera (
nFrontInputImage as Integer,
nBackInputImage as Integer,
nFrontOutputImage as Integer,
nBackOutputImage as Integer,
options as String,
pszMICR as String,
nCount as Integer
nFrontOutputGrayImage as Integer,
nBackOutputGrayImage as Integer,

)
as Integer;

Parameters

nFrontInputImage

The image buffer 0-9 to use as the source image for the front of the check. A value of -1 will cause the contents of
the main image property to be used. The source image must be grayscale.

nBackInputImage
The image buffer 0-9 to use as the source image for the back of the check. A value of -1 tells the method there is
no back image to use.

nFrontOutputImage
The image buffer 0-9 to use as the destination image for the dewarped, resized, and thresholded front check
image. A value of -1 tells the method that no output front image is needed.

nBackOutputImage
The image buffer 0-9 to use as the destination image for the dewarped, resized, and thresholded back check
image. A value of -1 tells the method that no output back image is needed.

options
A string of single character commands that select cropping (C), trapezoidal warp detection and correction (T), 180
degree rotation detection and correction (R), blank suppression disable (B), and confidence processing (M=nn
where nn defaults to 85). The default values for CTRB are off. Use the “C” option if the input image has not been
previously cropped and corrected. Use the “T” option for camera images or if the source is unknown. The “T” option
is not required for page scanner images

pszMICR
The string of MICR characters recognized from the selected front check.

nCount
The number of MICR characters recognized.

nFrontOutputGrayImage
The image buffer 0-9 to use as the destination image for the dewarped, and resized grayscale front check image. A
value of -1 tells the method that no output grayscale front image is needed.

nBackOutputGrayImage
The image buffer 0-9 to use as the destination image for the dewarped, and resized grayscale back check image. A
value of -1 tells the method that no output grayscale back image is needed.

ampResult
The error code returned. Error codes are defined in Appendix A.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code.

Remarks

The selected input image(s) must be loaded prior to reading MICR characters. Once ReadCameraEx has been called,
the number of characters found can be accessed through the nCount value. The MICR characters for the image can be
accessed through the pszMICR value. An exception will be thrown (e_NoMemory) if the system runs out of memory
while allocating variables within this method.

See Also

Appendix A

4.4. IampMICR::ReadMICR

The IampMICR::ReadMICR method scans the loaded image for a line of MICR, OCR-A, or OCR-B characters.

Quick Info

See IampMICR : IDispatch.

C++ HRESULT ReadMICR (
BSTR* pszMICR,
LONG* nCount,
LONG* ampResult

);

C# int ReadMICR (
out string pszMICR,
out int nCount

);

C HRESULT IampMICR_ReadMICR (
BSTR* pszMICR,
LONG* nCount,
LONG* ampResult

);

JAVA int ReadMICR (
String outputMICR,
int outputCount

);

VB ReadMICR (
pszMICR as String,
nCount as Integer

)
as Integer;

Parameters

pszMICR

The string of MICR characters recognized from the selected front check.

nCount
The number of MICR characters recognized.

ampResult

The error code returned. Error codes are defined in Appendix A.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code.

Remarks

The image must be loaded and the symbologyMask property must be set prior to reading MICR characters from an
image. An exception will be thrown (e_SymbologyMaskNotSet) if this method is called prior to setting the mask. All
other properties have default values as described in the respective sections. Once ReadMICR has been called, the
number of characters found can be accessed through the count value. The MICR characters for the image can be
accessed through the pszMICR value. An exception will be thrown (e_NoMemory) if the system runs out of memory
while allocating variables within this method.

Check images that have been acquired from a camera are frequently warped in a keystone fashion and have poor
grayscale content. If the CameraMode property is enabled, ReadMICR will use special image processing to dewarp and
threshold the image prior to reading the MICR line.

See Also

Appendix A

4.5. IampMICR::ReadMICRPage

The IampMICR::ReadMICRPage method scans the loaded image for a MICR routing field and then builds a region of
interest that contains the entire line of MICR characters. The character shapes within the region of interest are then
read in a fashion similar to ReadMICR.

Quick Info

See IampMICR : IDispatch.

C++ HRESULT ReadMICRPage (

BSTR* pszMICR,
LONG* nCount,
LONG* ampResult

);

C# int ReadMICRPage (
out string pszMICR,
out int nCount

);

C HRESULT IampMICR_ReadMICRPage (
BSTR* pszMICR,
LONG* nCount,

 LONG* ampResult
);

JAVA int ReadMICRPage (
String outputMICR,
int outputCount

VB ReadMICRPage (
pszMICR as String,
nCount as Integer

)
as Integer;

Parameters

pszMICR

The string of MICR characters recognized from the selected front check.

nCount
The number of MICR characters recognized.

ampResult

The error code returned. Error codes are defined in Appendix A.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code.

Remarks

The image must be loaded and the symbologyMask property must be set prior to reading MICR characters from an
image. An exception will be thrown (e_SymbologyMaskNotSet) if this method is called prior to setting the mask. All
other properties have default values as described in the respective sections. Once ReadMICRPage has been called,
the number of characters found can be accessed through the count value. The MICR characters for the image can be
accessed through the pszMICR value. The extent of the MICR region of interest can be obtained through the
getMICRRegion method. An exception will be thrown (e_NoMemory) if the system runs out of memory while allocating
variables within this method.

See Also

IampMICR::getMICRRegion, Appendix A

4.6. IampMICR::ReadScanner

The IampMICR::ReadScanner method uses special full page image processing to read the MICR line in check images
that come from scanners.

Quick Info

See IampMICR : IDispatch.

C++ HRESULT ReadScanner (

LONG nFrontInputImage,
LONG nBackInputImage,
LONG nFrontOutputImage,
LONG nBackOutputImage,
BSTR options,
BSTR* pszMICR,
LONG* nCount,
LONG* ampResult

);

C# int ReadScanner (
int nFrontInputImage,
int nBackInputImage,
int nFrontOutputImage,
int nBackOutputImage
string options,
out string pszMICR,
out int nCount

);

C HRESULT IampMICR_ReadScanner (
LONG nFrontInputImage,
LONG nBackInputImage,
LONG nFrontOutputImage,
LONG nBackOutputImage,
BSTR options,
BSTR* pszMICR,
LONG* nCount,
LONG* ampResult

);

JAVA int ReadScanner (
int nFrontInputImage,
int nBackInputImage,
int nFrontOutputImage,
int nBackOutputImage,
String options,
String outputMICR,
int outputCount

);

VB ReadScanner (
nFrontInputImage as Integer,
nBackInputImage as Integer,
nFrontOutputImage as Integer,
nBackOutputImage as Integer,
options as String,
pszMICR as String,
nCount as Integer

)
as Integer;

Parameters

nFrontInputImage

The image buffer 0-9 to use as the source image for the front of the check. A value of -1 will cause the contents of
the main image property to be used.

nBackInputImage
The image buffer 0-9 to use as the source image for the back of the check. A value of -1 tells the method there is
no back image to use.

nFrontOutputImage
The image buffer 0-9 to use as the destination image for the dewarped, resized, and thresholded front check
image. A value of -1 tells the method that no output front image is needed.

nBackOutputImage
The image buffer 0-9 to use as the destination image for the dewarped, resized, and thresholded back check
image. A value of -1 tells the method that no output back image is needed.

options
A string of single character commands that select cropping (C), trapezoidal warp detection and correction (T), 180
degree rotation detection and correction (R), blank suppression disable (B), and confidence processing (M=nn
where nn defaults to 85). The default values for CTRB are off. Use the “C” option if the input image has not been
previously cropped and corrected. Use the “T” option for camera images or if the source is unknown. The “T” option
is not required for page scanner images

pszMICR
The string of MICR characters recognized from the selected front check.

nCount
The number of MICR characters recognized.

ampResult
The error code returned. Error codes are defined in Appendix A.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code.

Remarks

ReadScanner is useful for isolating check images that have been scanned from a full page flatbed scanner where the
check may be at the top, middle or bottom of the bitmap source image. The selected input image(s) must be loaded
prior to reading MICR characters. Once ReadScanner has been called, the number of characters found can be
accessed through the nCount value. The MICR characters for the image can be accessed through the pszMICR value.
An exception will be thrown (e_NoMemory) if the system runs out of memory while allocating variables within this
method.

See Also

IampMICR::GetReadScannerResults

4.7. IampMICR::SetAppDirectory

The IampMICR::SetAppDirectory method sets the AMPLib install directory containing “storage.dat”.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT SetAppDirectory (
BSTR pszAppDirectory

);

C# void SetAppDirectory (
string pszAppDirectory

);

C HRESULT IampImage_SetAppDirectory (
BSTR pszAppDirectory

);

JAVA void SetAppDirectory (
String pszAppDirectory

);

VB SetAppDirectory (
pszAppDirectory as String

)

Parameters

pszAppDirectory

Specifies the AMPLib install directory containing “storage.dat”.

Remarks

If the default install directory on the C: drive is used, this method is unnecessary. The value will be preset to
“C:\Program Files\AllMyPapers\AmpLib\bin\”

4.8. IampMICR::SetBottomCropDistance

The IampMICR::SetBottomCropDistance method sets a region on the bottom of the check image to be ignored
during MICR reading.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT SetBottomCropDistance (
double dblCropDistance

);

C# void SetBottomCropDistance (
double dblCropDistance

);

C HRESULT IampImage_SetBottomCropDistance (
double dblCropDistance

);

JAVA void SetBottomCropDistance (
double dblCropDistance

);

VB SetBottomCropDistance (
dblCropDistance as Double

)

Parameters

 dblCropDistance

 Specifies the crop distance from the bottom of the check, in inches, to ignore during MICR reading.

Remarks

This method sets a region at the bottom of the check to ignore during MICR reading.

4.9. IampMICR::SetComboMode

The IampMICR::SetComboMode method controls the settings for combo mode. Combo Mode uses a fast MICR
reading algorithm to read a character sequence, then an enhanced MICR reading algorithm if the fast attempt did not
successfully read enough characters.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT SetComboMode (
int nEnableCombo,
int nComboChars

);

C# void SetComboMode (
int nEnableCombo,
int nComboChars

);

C HRESULT IampImage_SetComboMode (
int nEnableCombo,
int nComboChars

);

JAVA void SetComboMode (
int nEnableCombo,
int nComboChars

);

VB SetComboMode (
nEnableCombo as Integer,
nComboChars as Integer

)

Parameters

nEnableCombo
 Activates Combo Mode.

nComboChars
 Sets the minimum successful character reads needed to skip the enhanced reading attempt.

Remarks

Combo mode can be used to apply enhanced scan techniques only where necessary, reducing processing time for
groups of check images of varying quality.

4.10. IampMICR::SetDo180

The IampMICR::SetDo180 method turns Do180 mode on or off. With Do180 mode on, images will be rotated 180
degrees and rescanned if a MICR line cannot be detected in the original.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT SetDo180 (
int nDo180

);

C# void SetDo180 (
int nDo180

);

C HRESULT IampImage_SetDo180(
int nDo180

);

JAVA void SetDo180 (
int nDo180

);

VB SetDo180 (
nDo180 as Integer

)

Parameters

pszAppDirectory
 1 turns Do180 mode on, 0 turns it off.

Remarks

An unsuccessful MICR read attempt is determined by a result containing fewer than 4 correct characters.

4.11. IampMICR::SetDoImagePrep

The IampMICR::SetDoImagePrep method configures image deskewing and border removal.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT SetDoImagePrep (
int nImagePrep,
int nBlackEdge

);

C# void SetDoImagePrep (
int nImagePrep,
int nBlackEdge

);

C HRESULT IampImage_SetDoImagePrep(
int nImagePrep,
int nBlackEdge

);

JAVA void SetDoImagePrep (
int nImagePrep,
int nBlackEdge

);

VB SetDoImagePrep (
nImagePrep as Integer,
nBlackEdge as Integer

)

Parameters

 nImagePrep

 1 turns deskewing and border removal on, 0 turns it off.

 nBlackEdge
 1 turns black border removal mode on, 0 turns white border removal on.

Remarks

See the AMPPrepMICR entry in the AMPLib Manual for more information.

See Also

IampMICR::SetDoImageRepair

4.12. IampMICR::SetDoImageRepair

The IampMICR::SetDoImageRepair method allows the image object to be processed with special image
enhancements.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT SetDoImageRepair (
int nDoImageRepair

);

C# void SetDoImageRepair (
int nDoImageRepair

);

C HRESULT IampImage_SetDoImageRepair(
int nDoImageRepair

);

JAVA void SetDoImageRepair (
int nDoImageRepair

);

VB SetDoImageRepair (
nDoImageRepair as Integer

)

Parameters

 nDoImageRepair

 1 turns DoImageRepair mode on, 0 turns it off.

Remarks

DoImageRepair mode allows the image object to be updated with special image processing.

This is usually set to 0.

See Also

IampMICR::SetDoRepair

4.13. IampMICR::SetDoImageUpdate

The IampMICR::SetDoImageUpdate method allows the image object to be updated with user-selected image
enhancements.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT SetDoImageUpdate (
int nDoImageUpdate

);

C# void SetDoImageUpdate (
int nDoImageUpdate

);

C HRESULT IampImage_SetDoImageUpdate (
int nDoImageUpdate

);

JAVA void SetDoImageUpdate (
int nDoImageUpdate

);

VB SetDoImageUpdate (
nDoImageUpdate as Integer

)

Parameters

 nDoImageUpdate

 1 turns image update mode on, 0 turns it off.

Remarks

Image update mode allows the image object to be updated with user-selected image enhancements.

If Combo Mode is off, any user-selected deskewing, border removal, and image filtering operations will be applied
to the image object.

If Combo Mode is on, user-selected enhancements will be applied only if their application was required to read the
MICR data successfully.

See Also

IampMICR::doneImageUpdate

4.14. IampMICR::SetDoPrescale

The IampMICR::SetDoPrescale method turns image prescaling on or off. Prescaling effectively doubles the resolution
of images with 150 dpi or less.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT SetDoPrescale (
int nPrescale

);

C# void SetDoPrescale (
int nPrescale

);

C HRESULT IampImage_SetDoPrescale(
int nPrescale

);

JAVA void SetDoPrescale (
int nPrescale

);

VB SetDoPrescale (
nPrescale as Integer

)

Parameters

 nPrescale

 1 turns image prescaling mode on, 0 turns it off.

Remarks

MICR character reading requires a sufficiently high resolution to work well. Image prescaling can accommodate this:
if the resolution of the image is 150 dpi or less, image prescaling will double the image resolution.

4.15. IampMICR::SetDoRepair

The IampMICR::SetDoRepair method turns image repairing on or off.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT SetDoRepair (
int nDoRepair

);

C# void SetDoRepair (
int nDoRepair

);

C HRESULT IampImage_SetDoRepair(
int nDoRepair

);

JAVA void SetDoRepair (
int nDoRepair

);

VB SetDoRepair (
nDoRepair as Integer

)

Parameters

 nDoRepair

 1 turns nDoRepair mode on, 0 turns it off.

Remarks

When nDoRepair mode is on:

If any read errors are detected in the result data, then a temporary copy of the input image is repaired
based on the results of the first read. The repaired image is then used for a second MICR read. The two
MICR read results are then voted upon, and the result of the vote is reported.
When doing image repair and reprocess, the execution times will be about twice as long for images
which have read errors in the first pass.

Image repairing is distinct to AMPLib’s deskewing, border removal, and image filtration functions.

See Also

IampMICR::SetDoImageRepair

4.16. IampMICR::SetFieldVerifyMinConf

The IampMICR::SetFieldVerifyMinConf method sets the minimum acceptable confidence level for each section of a
MICR line. If the confidence value for any field does not meet the specified minimum during a MICR Verify operation,
the operation will be unsuccessful.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT SetFieldVerifyMinConf (
int nCheck,
int nRoute,
int nAccount,
int nAmount,
int nFieldMICRMinConf

);

C# void SetFieldVerifyMinConf (
int nCheck,
int nRoute,
int nAccount,
int nAmount,
int nFieldMICRMinConf

);

C HRESULT IampImage_SetFieldVerifyMinConf (
int nCheck,
int nRoute,
int nAccount,
int nAmount,
int nFieldMICRMinConf

);

JAVA void SetFieldVerifyMinConf (
int nCheck,
int nRoute,
int nAccount,
int nAmount,
int nFieldMICRMinConf

);

VB SetFieldVerifyMinConf (
int nCheck as Integer,
int nRoute as Integer,
int nAccount as Integer,
int nAmount as Integer,
int nFieldMICRMinConf as Integer

)

Parameters

nCheck
A 2-digit integer value that sets the minimum acceptable confidence value for the Check/AuxOnUs Field during a
MICR Verify operation.

nRoute

A 2-digit integer value that sets the minimum acceptable confidence value for the Route Field during a MICR Verify
operation.

nAccount
A 2-digit integer value that sets the minimum acceptable confidence value for the Account/OnUs Field during a
MICR Verify operation.

nAmount

A 2-digit integer value that sets the minimum acceptable confidence value for the Amount Field during a MICR
Verify operation.

nFieldMICRMinConf

A 2-digit integer value that sets the minimum acceptable confidence value for the entire MICR line during a MICR
Verify operation.

4.17. IampMICR::SetImageFilter

The IampMICR::SetImageFilter method configures background removal image filters.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT SetImageFilter (
int nEnable,
int nType,
int nThreshold

);

C# void SetImageFilter (
int nEnable,
int nType,
int nThreshold

);

C HRESULT IampImage_SetImageFilter (
int nEnable,
int nType,
int nThreshold

);

JAVA void SetImageFilter (
int nEnable,
int nType,
int nThreshold

);

VB SetImageFilter (
nEnable as Integer,
nType as Integer,
nThreshold as Integer

)

Parameters

nEnable
 1 turns image filtering on, 0 turns it off.

nType
Sets the filter type. Valid filters are 200, 201, and 202.

nThreshold

Sets the background removal strength. Valid values are 1 (weakest) to 9 (strongest).

Remarks

nType can be set to one of three filters: 200, 201, and 202.

These filters will remove the background from a large class of images and leave the foreground (text) information.
Each one will also accept a threshold value to increase the degree of removal.

200 uses the lower 5/8" of the image to determine background (MICR line on a check).

201 will perform the removal filter regardless as no test is performed.

202 uses the middle 1/3rd of the image to determine background (CAR/LAR region on a check).

200 and 202 also perform a test to determine if background noise is present before running the removal filter. If
not present no filter operation is performed.

The strength or amount of background removal is determined by the threshold value from 1 to 9 with 9 being the
most aggressive background removal and 1 the least. When used for preparing an image for OCR, the aggressive
value of 8 is often used. When the same image is being prepared for printing, the value of 6 is often used. This will
leave some noise on the image but will not impact the small text content of the image.

4.18. IampMICR::SetMICRCode

The IampMICR::SetMICRCode method sets the type of MICR code being read: either E13B, or CMC7.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT SetMICRCode (
int nMICRCode

);

C# void SetMICRCode (
int nMICRCode

);

C HRESULT IampImage_SetMICRCode(
int nMICRCode

);

JAVA void SetMICRCode (
int nMICRCode

);

VB SetMICRCode (
nMICRCode as Integer

)

Parameters

 nMICRCode

 1 = E13B

2 = CMC7

See Also

IampMICR::SetMICRRules

4.19. IampMICR::SetMICRMinConf

The IampMICR::SetMICRMinConf method sets the minimum confidence value to accept a MICR character read
attempt as successful.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT SetMICRMinConf (
int nMinConf

);

C# void SetMICRMinConf (
int nMinConf

);

C HRESULT IampImage_SetMICRMinConf(
int nMinConf

);

JAVA void SetMICRMinConf (
int nMinConf

);

VB SetMICRMinConf (
nMinConf as Integer

)

Parameters

 nMinConf

 Sets the minimum confidence value for character acceptance.

Remarks

An input parameter describing the Minimum Confidence value that should be used to accept or reject a
character. The value range is between 0 and 99 but the only reasonable values are between 80 and 90.
Setting the value too high will reject characters that are read correctly. Setting the value too low will
cause the acceptance of characters which are misreads or substitution errors.
The user must decide the best parameter value based on testing with their data set and with their set
of needs. In general, good images do not cause substitution errors. It is corrupted images that cause
problems. In all cases, a substitution error rate over a large data set is still expected to be a fraction of
one percent.
The following information is based on testing a wide range of images with the toolkit.
A MinCon of 80 is recommended for doing verification. It will generate some substitution errors on
corrupted images but since it is being compared to another result, this effect is minimized.
A MinCon of 85 is recommended for general usage. This will reduce the substitution rate and only
nominally reduce the read rate.
A MinCon of 89 is recommend for the lowest substitution error rate without dramatically reducing the
read rate.

4.20. IampMICR::SetMICRRules

The IampMICR::SetMICRCode method specifies the national banking association rules to apply.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT SetMICRRules (
int nMICRRules

);

C# void SetMICRRules (
int nMICRRules

);

C HRESULT IampImage_SetMICRRules(
int nMICRRules

);

JAVA void SetMICRRules (
int nMICRRules

);

VB SetMICRRules (
nMICRRules as Integer

)

Parameters

 nMICRRules

 0 = ABA rules set

Remarks
This specifies the national banking association rules to apply. Currently, only the ABA rule set from the US is
available.

See Also

IampMICR::SetMICRCode

4.21. IampMICR::SetNoBlanks

The IampMICR::SetNoBlanks method sets whether or not MICR blanks are reported.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT SetNoBlanks (
int nNoBlanks

);

C# void SetNoBlanks (
int nNoBlanks

);

C HRESULT IampImage_SetNoBlanks(
int nNoBlanks

);

JAVA void SetNoBlanks (
int nNoBlanks

);

VB SetNoBlanks (
nNoBlanks as Integer

)

Parameters

 nNoBlanks

 1 removes MICR blanks from output, 0 leaves them in.

4.22. IampMICR::SetNoRules

The IampMICR::SetNoRules method allows internal banking rules to be ignored.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT SetNoRules (
int nNoRules

);

C# void SetNoRules (
int nNoRules

);

C HRESULT IampImage_SetNoRules(
int nNoRules

);

JAVA void SetNoRules (
int nNoRules

);

VB SetNoRules (
nNoRules as Integer

)

Parameters

 nNoRules

 1 deactivates internal banking rules, 0 activates them.

Remarks

This is normally used when the input image contains only a portion of a MICR line.

See Also

IampMICR::SetNoBlanks

4.23. IampMICR::SetOCRAEnable

The IampMICR::SetOCRAEnable method activates OCR-A character reading.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT SetOCRAEnable (
int nEnable,
int nNumeric

);

C# void SetOCRAEnable (
int nEnable,
int nNumeric

);

C HRESULT IampImage_SetOCRAEnable(
int nEnable,
int nNumeric

);

JAVA void SetOCRAEnable (
int nEnable,
int nNumeric

);

VB SetOCRAEnable (
nEnable as Integer,
nNumeric as Integer

)

Parameters

 nEnable

1 enables OCR-A character reading, and 0 disables it. Enabling this will disable OCR-B and MICR reading.

NNumeric

1 enables OCR-A character reading optimized for numeric characters only. 0 enables full character set reading.

Remarks
OCR-A reading must be disabled to read OCR-B or MICR data.

See Also

IampMICR::SetOCRBEnable

4.24. IampMICR::SetOCRBEnable

The IampMICR::SetOCRBEnable method activates OCR-B character reading.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT SetOCRBEnable (
int nEnable,
int nNumeric

);

C# void SetOCRBEnable (
int nEnable,
int nNumeric

);

C HRESULT IampImage_SetOCRBEnable(
int nEnable,
int nNumeric

);

JAVA void SetOCRBEnable (
int nEnable,
int nNumeric

);

VB SetOCRBEnable (
nEnable as Integer,
nNumeric Integer

)

Parameters

 nEnable

1 enables OCR-B character reading, and 0 disables it. Enabling this will disable OCR-A and MICR reading.

NNumeric

1 enables OCR-B character reading optimized for numeric characters only. 0 enables full character set reading.

Remarks
OCR-B reading must be disabled to read OCR-A or MICR data.

See Also

IampMICR::SetOCRAEnable

4.25. IampMICR::SetResolution

The IampMICR::SetResolution method sets the way that a check image's resolution is determined.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT SetResolution (
int nForceResolution,
int nResolution

);

C# void SetResolution (
int nForceResolution,
int nResolution

);

C HRESULT IampImage_SetResolution(
int nForceResolution,
int nResolution

);

JAVA void SetResolution (
int nForceResolution,
int nResolution

);

VB SetResolution (
nForceResolution as Integer,
nResolution as Integer

)

Parameters

 nForceResolution

 If nResolution is greater than 0, this value (in DPI) will be the check image's resolution.

nResolution
 less than 0: use resolution data in the check image file
 0: estimate resolution based on image resolution and common check sizes
 greater than 0: use nForceResolution for resolution

Remarks

A good approximation to the actual resolution of the check image is needed to determine where the
bottom approximately 5/8" of the check is located. Forcing resolution with this parameter is normally
not necessary since the image file will generally contain this information.
If resolution data is not included in the file, a non-zero value for the Resolution parameter will be used.
The input image will have the resolution set if the input value is >= 0.

4.26. IampMICR::SetRotate

The IampMICR::SetRotate method sets check image rotation to 90 degrees right, 90 degrees left, or off.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT SetRotate (
int nRotate

);

C# void SetRotate (
int nRotate

);

C HRESULT IampImage_SetRotate(
int nRotate

);

JAVA void SetRotate (
int nRotate

);

VB SetRotate (
nRotate as Integer

)

Parameters

 nRotate

0 = no rotation
1 = rotate 90 degrees right
-1 = rotate 90 degrees left

Remarks

This setting is used to accommodate check images that are scanned 90 degrees off of normal screen
orientation.

4.27. IampMICR::SetTimeout

The IampMICR::SetTimeout method sets the maximum allowed processing time for a MICR read attempt, in seconds.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT SetTimeout (
double dblTimeout

);

C# void SetTimeout (
double dblTimeout

);

C HRESULT IampImage_SetTimeout(
double dblTimeout

);

JAVA void SetTimeout (
double dblTimeout

);

VB SetTimeout (
dblTimeout as Double

)

Parameters

 dblTimeout

 Sets the maximum allowed number of seconds for a MICR read attempt.

Remarks

2.00 seconds is the recommended default setting.

4.28. IampMICR::VerifyMICR

The IampImage::VerifyMICR method analyzes a check image and verifies a previous MICR read result on a character
by character basis.

Quick Info

See IampMICR: IDispatch.

C++

HRESULT VerifyMICR (
int nMode,
int nCount,
BSTR pInputMICR,
BSTR* pReadMICR,
int* nReadCount,
BSTR* pVerifyMICR,
int* nVerifyCount,
int* ampResult

);

C# int VerifyMICR (
int nMode,
int nCount,
string pInputMICR,
out string pReadMICR,
out int nReadCount,
out string pVerifyMICR,
out int nVerifyCount

);

C HRESULT IampImage_VerifyMICR (
int nMode,
int nCount,
BSTR pInputMICR,
BSTR* pReadMICR,
int* nReadCount,
BSTR* pVerifyMICR,
int* nVerifyCount,
int* ampResult

);

JAVA int VerifyMICR (
Integer nMode,
Integer nCount,
String pInputMICR,
String pReadMICR,
Integer nReadCount,
String pVerifyMICR,

 Integer nVerifyCount
);

VB VerifyMICR (
nMode as Integer,
nCount as Integer,
pInputMICR as String,
pReadMICR as String,
nReadCount as Integer,
pVerifyMICR as String,

 nVerifyCount as Integer
)

as Integer;

Parameters

nMode
 An integer value that sets the mode of the Verify operation.
 0: Verify MICR
 1: Verify IRD

nCount

An integer containing the length of the pInputMICR string.

pInputMICR
 A string containing the MICR input line to be verified.

pReadMICR

A string that will contain the result of the last MICR Read operation run by the VerifyMICR operation. This will be
either the first successful read result found, or the last read result if no successful read occurs.

nReadCount
 An integer that will be set to the length of the pReadMICR string.

pVerifyMICR
 A string that will contain the output of the verify operation which is an integration of the pInputMICR and
pReadMICR values.

nVerifyCount
 An integer that will be set to the length of the pVerifyMICR string.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code. An exception will be
thrown (E_OUTOFMEMORY) if the system runs out of memory while allocating variables within this method. An
exception will be thrown (E_INVALIDARG) if the options, fileType or imageIndex parameters incorrect. An exception will
be thrown (E_FAIL) if there is a problem while performing the verify operation.

Remarks

This API will read a MICR line from the source image and compare it with the data provided in
pInputMICR which typically comes from a hardware reader or simply hardware. The vote or correctly
the results of the vote are placed in pVerifyMICR. If the SetDoImageUpdate property is enabled then
the source image will be modified based on the filtering needed to improve the accuracy of the read.
If nMode is set to 1 (IRD mode), VerifyMICR does a different style of voting on the EPC and Amount
fields in the MICR line than if nMode is set to 0 (MICR mode). MICR mode requires an exact match in
both the EPC and Amount fields in order for the voted upon results to indicate an overall match. IRD
mode is not as strict and allows a match to occur even if the EPC field in the check image is completely
missing. Similarly, a match may be declared if the Amount field is missing from the check image but is
present in the hardware data. In addition, IRD mode does not try to exactly match dash characters,
but will skip over dashes looking for correspondence on the more significant characters in a given field.
The data returned using getVerifyMICRData contains information on how the vote results were obtained
for each character as opposed to a confidence percentage. The data represents the following:
 0--indeterminate
 1--hardware and software were the same, hardware selected

 2--hardware and software best are same, hardware selected
 3--hardware and software did NOT match, software selected
 4--hardware and software best do NOT match, hardware selected
 5--hardware misreads and software reads, software selected
 6--hardware misread and no software selection, misread selected

The IRD mode voting process changes all percent 2 values to 1 values. Consequently, if there is a match,
getVerifyMICRData will have all 1s.

See Also

IampMICR::getVerifyMICRData,

4.29. IampMICR::VerifyMICRField

The IampImage::VerifyMICRField method analyzes a check image and verifies a previous MICR read result on a field
by field basis.

Quick Info

See IampMICR: IDispatch.

C++

HRESULT VerifyMICRField (
int nMode,
int nCount,
BSTR pInputMICR,
BSTR* pReadMICR,
int* nReadCount,
BSTR* pVerifyMICR,
int* nVerifyCount,
int* ampResult

);

C# int VerifyMICRField (
int nMode,
int nCount,
string pInputMICR,
out string pReadMICR,
out int nReadCount,
out string pVerifyMICR,
out int nVerifyCount

);

C HRESULT IampImage_VerifyMICRField (
int nMode,
int nCount,
BSTR pInputMICR,
BSTR* pReadMICR,
int* nReadCount,
BSTR* pVerifyMICR,
int* nVerifyCount,
int* ampResult

);

JAVA int VerifyMICRField (
Integer nMode,
Integer nCount,
String pInputMICR,
String pReadMICR,
Integer nReadCount,
String pVerifyMICR,

 Integer nVerifyCount
);

VB VerifyMICRField (
nMode as Integer,
nCount as Integer,
pInputMICR as String,
pReadMICR as String,
nReadCount as Integer,
pVerifyMICR as String,

 nVerifyCount as Integer
)

as Integer;

Parameters

nMode
 An integer value that sets the mode of the Verify operation.
 0: Verify MICR Field – the input image is a normal check image.
 1: Verify IRD Field – the input image is a reduced size check image as found in an IRD.

nCount

An integer containing the length of the pInputMICR string.

pInputMICR
 A string containing the MICR input line to be verified.

pReadMICR

A string that will contain the result of the last MICR Read operation run by the VerifyMICRField operation. This will
be either the first successful read result found, or the last read result if no successful read occurs.

nReadCount
 An integer that will be set to the length of the pReadMICR string.

pVerifyMICR
 A string that will contain the output of the verify operation which is an integration of the pInputMICR and
pReadMICR values.

nVerifyCount
 An integer that will be set to the length of the pVerifyMICR string.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code. An exception will be
thrown (E_OUTOFMEMORY) if the system runs out of memory while allocating variables within this method. An
exception will be thrown (E_INVALIDARG) if the options, fileType or imageIndex parameters incorrect. An exception will
be thrown (E_FAIL) if there is a problem while performing the verify operation.

Remarks

The VerifyMICRField function will verify that the pInputMICR field data matches the MICR codeline on the image. It
ensures the usability of the MICR codeline on the image and will detect items whose captured MICR data and image
data came from different source documents. Currently only black and white source images are supported.

This function accepts as input the items image and the captured MICR field elements (Routing number, account number,
check serial number, and check amount). The field data is passed in to the function as a complete MICR line and then
parsed to separate out the field data. Returned will be the field data as read by the OCR process. A confidence factor for
each field is also returned indicating the degree of match between the input and returned field data. Minimum
confidence threshold values are also input for each field. The function uses these confidence thresholds to invoke “Try
harder” processing to be able to return a result with the required confidence level or higher.

The pInputMICR line is parsed into its separate “check”, “route”, “account”, and “amount” fields and these fields are
used for the verify operation. All dashes and special symbols are internally removed from each field so that only the
numbers remain. The account, check number and amount field strings can contain leading zeros or have them removed.
Leading zeros will be ignored in the verification process except for routing numbers.

The SetFieldVerifyMinConf method can be used to set the input confidence of each field to be verified. A typical input
value is 94. If the field is to be excluded during verify, then the input confidence should be set to 0.

pVerifyMICR returns the MICR field contents as read from the check image. The entire numeric field content is returned
including leading zeros. No special symbols or dashes are returned with the exception of the routing number where a
dash will be returned for a “4-4” format. pReadMICR will return the entire codeline for the OCR read of the last OCR
engine process used. This does not combine the results of the different OCR reads and should not be relied on as the
best read.

Confidence Values

The following table shows the field confidence values returned with the getFieldVerifyResultMinConf method:

Confidence

Score
Description

99 All characters match at above the min confidence specified in SetFieldVerifyMinConf.

98 to 94 All characters match with best choice.

(99 minus number of best choice matches)

93-86 All characters match but some unreadable by OCR.
(93 minus # unreadable characters)

85-81 characters match except for some missing on OCR Result.

(85 minus number of missing characters)

80-71 Field Mismatch. OCR and reference do not agree.

(81minus number of characters that mismatch in reference field,)
50 Field does not exist on codeline image. Indicates missing codeline data (E.g. Missing check

number or account number)

40 Account reference field matches, but additional characters returned in account number
result. (Indicates presence of transit field data, or short account number mapping)

SetFieldVerifyMinConf allows users to specify their required minimum threshold per field. Valid settings for these fields
are 0 or 81 to 99 as per the confidence table above. Generally the lower the confidence the faster the throughput as the
OCR verification process will terminate early once the minimum confidence threshold is achieved.

The OCR process can uses several OCR engine processes to verify the field with the desired confidence level.
GetFieldVerifyResultData returns the engineLevel which ranges from 1-8 indicating the number of OCR engine processes
it used to achieve the result.

General information about using FieldVerify:

Often checks do not have “amounts” encoded on the code line. This function will return an amount if found regardless if
you provided the reference value or not.

The function uses pattern matching to interpret the field data. For best results you should provide the check serial
number. If you do not need to validate the check number, you can use SetFieldVerifyMinConf->nCheck to 0.

See Also

IampMICR::VerifyMICR, IampMICR::GetFieldVerifyResultData, IampMICR::GetFieldVerifyResultMinConf,
IampMICR::getVerifyMICRData, IampMICR::SetFieldVerifyMinConf

4.30. IampMICR::AssembleMICR

The IampMICR::AssembleMICR method assembles a single MICR line from the fields found on a check image. This
method has the reverse effect of the IampMICR::getMICRFields method.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT AssembleMICR (
BSTR pszAuxOnUs,
BSTR pszEPC,
BSTR pszRoute,
BSTR pszOnUs,
BSTR pszAmount,
BSTR pszTranslation,
BSTR* pszOutputMICR,
int* returnValue

);

C# int AssembleMICR (
string pszAuxOnUs,
string pszEPC,
string pszRoute,
string pszOnUs,
string pszAmount,
string pszTranslation,
string * pszOutputMICR

);

C HRESULT IampImage_ AssembleMICR (
BSTR pszAuxOnUs,
BSTR pszEPC,
BSTR pszRoute,
BSTR pszOnUs,
BSTR pszAmount,
BSTR pszTranslation,
BSTR* pszOutputMICR,
int* returnValue

);

JAVA int AssembleMICR (
String pszAuxOnUs,
String pszEPC,
String pszRoute,
String pszOnUs,
String pszAmount,
String pszTranslation,
String * pszOutputMICR

);

VB AssembleMICR (
pszAuxOnUs as String,
pszEPC as String,
pszRoute as String,
pszOnUs as String,
pszAmount as String,
pszTranslation as String,
pszOutputMICR as String,

)
as String

Parameters

pszAuxOnUs

A pointer to the string representing the input Aux On Us field.

pszEPC

A pointer to the string representing the input EPC field.

pszRoute
A pointer to the string representing the input Route field.

pszOnUs
A pointer to the string representing the input On Us field.

pszAmount

A pointer to the string representing the input Amount field.

pszTranslation
A pointer to an ASCII character translation string. If present, all MICR output will be translated through this table.

pszOutputMICR
A pointer to the output string, in to which the assembled MICR string will be written.

Remarks
The MICR output will be in the following left-to-right format:

 Aux On Us (max length 17 characters)

 Space (1 character if Aux On Us data present)

 EPC (max length 1 character)

 Routing (fixed length 11 characters)

 On Us (max length 20 characters)

Space (1 character if input Amount data present)

Amount field (fixed length 12 characters if present)

Translation tables are strings containing an ordered set of characters matching the available MICR characters in the
current code (i.e., E13B vs CMC7). An example translation table is shown below:

Example Translation Table

Location Meaning MICR Default

0 '0' '0' '0'

1 '1' '1' '1'

2 '2' '2' '2'

3 '3' '3' '3'

4 '4' '4' '4'

5 '5' '5' '5'

6 '6' '6' '6'

7 '7' '7' '7'

8 '8' '8' '8'

9 '9' '9' '9'

10 Routing  'A'

11 Amount  'B'

12 On Us  'C'

13 Dash  'D'

14 Blank ' ' ' '

15 Misread NA '*'

16 Best is same as Selected NA 'N'

See Also
IampMICR::getMICRFields

4.31. IampMICR::DetectCoupon

The IampMICR::DetectCoupon method provides for rapid detection and reading of Remittance Coupons, especially as
found in Retail Lockbox processing. When processing a large number of intermixed coupons and checks, rapid detection
of a coupon can greatly improve the throughput of the process. A coupon with multiple barcodes can be detected in less
time than is needed to process the associated check.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT AssembleMICR (
int nFrontInput,
int nBackInput,
int nForceResolution,
int nFieldsCount,
int* pnDetected,
int* pnRotated180,
int* pnSide,
int nFieldType1,
int dwSymbologyMask1,
int bChecksum1,
int nMinLength1,
int nMaxLength1,
int nFieldType2,
int dwSymbologyMask2,
int bCheckSum2,
int nMinLength2,
int nMaxLength2,
int* pnLengthField1,
int* pnLengthField2,
byte* pbyFieldResults1,
byte* pbyFieldResults2,
int* pnDx1,
int* pnDy1,
int* pnX1,
int* pnY1,
int* pnDx2,
int* pnDy2,
int* pnX2,
int* pnY2,
int* returnValue

);

C# int AssembleMICR (
int nFrontInput,
int nBackInput,
int nForceResolution,
int nFieldsCount,
ref int pnDetected,
ref int pnRotated180,
ref int pnSide,
int nFieldType1,
int dwSymbologyMask1,
int bChecksum1,
int nMinLength1,
int nMaxLength1,
int nFieldType2,
int dwSymbologyMask2,
int bCheckSum2,
int nMinLength2,
int nMaxLength2,
ref int pnLengthField1,
ref int pnLengthField2,
byte[] pbyFieldResults1,
byte[] pbyFieldResults2,
ref int pnDx1,
ref int pnDy1,
ref int pnX1,
ref int pnY1,
ref int pnDx2,
ref int pnDy2,
ref int pnX2,
ref int pnY2

);

C HRESULT IampImage_ AssembleMICR (
int nFrontInput,
int nBackInput,
int nForceResolution,
int nFieldsCount,
int* pnDetected,
int* pnRotated180,
int* pnSide,
int nFieldType1,
int dwSymbologyMask1,
int bChecksum1,
int nMinLength1,
int nMaxLength1,
int nFieldType2,
int dwSymbologyMask2,
int bCheckSum2,
int nMinLength2,
int nMaxLength2,
int* pnLengthField1,
int* pnLengthField2,
byte* pbyFieldResults1,
byte* pbyFieldResults2,
int* pnDx1,
int* pnDy1,
int* pnX1,
int* pnY1,
int* pnDx2,
int* pnDy2,
int* pnX2,
int* pnY2,
int* returnValue

);

JAVA int AssembleMICR (
int nFrontInput,
int nBackInput,
int nForceResolution,
int nFieldsCount,
int pnDetected,
int pnRotated180,
int pnSide,
int nFieldType1,
int dwSymbologyMask1,
int bChecksum1,
int nMinLength1,
int nMaxLength1,
int nFieldType2,
int dwSymbologyMask2,
int bCheckSum2,
int nMinLength2,
int nMaxLength2,
int pnLengthField1,
int pnLengthField2,
byte pbyFieldResults1,
byte pbyFieldResults2,
int pnDx1,
int pnDy1,
int pnX1,
int pnY1,
int pnDx2,
int pnDy2,
int pnX2,
int pnY2

);

VB DetectCoupon (
nFrontInput as Integer,
nBackInput as Integer,
nForceResolution as Integer,
nFieldsCount as Integer,
pnDetected as Integer,
pnRotated180 as Integer,
pnSide as Integer,
nFieldType1 as Integer,
dwSymbologyMask1 as Integer,
bChecksum1 as Integer,
nMinLength1 as Integer,
nMaxLength1 as Integer,
nFieldType2 as Integer,
dwSymbologyMask2 as Integer,
bCheckSum2 as Integer,
nMinLength2 as Integer,
nMaxLength2 as Integer,
pnLengthField1 as Integer,
pnLengthField2 as Integer,
pbyFieldResults1() as Byte,
pbyFieldResults2() as Byte,
pnDx1 as Integer,
pnDy1 as Integer,
pnX1 as Integer,
pnY1 as Integer,
pnDx2 as Integer,
pnDy2 as Integer,
pnX2 as Integer,
pnY2 as Integer

)
as Integer

Parameters

nFrontInput
The index of the image object containing the front side of the document.

nBackInput

The index of the image object containing the back side of the document.

nForceResolution

This forces the resolution of input images to the specified DPI value, or uses the image default if set to -1.

nFieldsCount

The number of fields (barcode or OCR results) used to detect a coupon. This value can be 1 or 2.

pnDetected

DetectCoupon will set this to nonzero if nFieldsCount fields were successfully detected, or zero if not.

pnRotated180

DetectCoupon will set this to nonzero if the image was upside-down, or zero if it was right side up.

pnSide

DetectCoupon will set this to nonzero if a field was found on the second image, or zero if not.

nFieldType1

The first type of field to search for. 1 = barcode, 2 = OCR.

dwSymbologyMask1

The mask of the barcode types or OCR types to search for when searching for the first field. These can be made
from the bitwise-or of standard AmpLib barcode or OCR mask values.

bChecksum1

If nonzero, DetectCoupon will look for checksums on the first field.

nMinLength1

The minimum character count allowed for success in the first field read operation.

nMaxLength1

The maximum character count allowed for success in the first field read operation.

nFieldType2
The second type of field to search for (if nFieldsCount = 2). 1 = barcode, 2 = OCR.

dwSymbologyMask2

The mask of the barcode types or OCR types to search for when searching for the second field. These can be made
from the bitwise-or of standard AmpLib barcode or OCR mask values.

bCheckSum2

If nonzero, DetectCoupon will look for checksums on the second field.

nMinLength2
The minimum character count allowed for success in the second field read operation.

nMaxLength2

The maximum character count allowed for success in the second field read operation.

pnLengthField1

DetectCoupon will set this to the character count of the first field result, if found.

pnLengthField2

DetectCoupon will set this to the character count of the second field result, if found.

pbyFieldResults1

DetectCoupon will write the first field result into this array, if found.

pbyFieldResults2
DetectCoupon will write the second field result into this array, if found.

pnX1, pnY1, pnDx1, pnDy1
DetectCoupon will write the first field x location, y location, width, and height, respectively, into these values, if
found.

pnX2, pnY2, pnDx2, pnDy2

DetectCoupon will write the first field x location, y location, width, and height, respectively, into these values, if
found.

Remarks

The DetectCoupon function will examine the Front image and alternatively the Back image for the conditions that define
a Coupon. It will then report what, in anything, was found. In many cases, the detection function is sufficient to provide
all the needed information about the coupon and no additional read is necessary.

The DetectCoupon function will examine one or two fields for the conditions that define a Coupon. Those conditions are
the presence of the specific symbology (barcode or OCR), the specific length of the result and additionally in future
releases the specific location and content.

The resolution of the image is usually contained in the image structure but if this is wrong for any reason, the
nForceResolution value can be used to input the current information.

A typical condition for defining a coupon is the presence of the USPS One Code. Most (but not all) addresses on retail
coupons will have a USPS One Code. By the same token, most checks will not have such a code. Hence a coupon
detector can have the following settings:

nFieldType1 = 1 ; // barcode
SymbologyMask1 = BC_4STATEUSPS ; // usps one code only
MinLength1 = 40 ;
MaxLength1 = 80 ;

The ampDetectCoupon can be used to detect and read coupons when the fields are general purpose barcodes. For
example, assume there are two barcodes, one has the amount due and is 6 digits and the other is the account and it is
8 digits. The following settings will detect a two barcode image as a coupon:

nFieldType1 = 1 ; // barcode
SymbologyMask1 = BC_3of9; // Code 39
MinLength1 = 6 ;
MaxLength1 = 6 ;

nFieldType1 = 1 ; // barcode
SymbologyMask1 = BC_3of9; // Code 39
MinLength1 = 8 ;
MaxLength1 = 8 ;

In this case the result fields for length, value and location (if output parameters present) will be set. A single call will
provide the detection and the values needed for processing this coupon.

Another common detect and read case is for OCR characters in the bottom or top clear band on the coupon. The
amount of data in a field tend to be very long in this case. Again, the length of the result will determine if it is the
Coupon. An example of this is:

nFieldType1 = 2 ; // OCR
SymbologyMask1 = ampOCRANUM ; //OCR A numeric only
MinLength1 = 50 ;
MaxLength1 = 80 ;

See Also

IampMICR::ReadMICR

4.32. IampMICR::enableReadRemit

The IampMICR::enableReadRemit property enables MICR reading over the entire workimage property.

Quick Info

See IampMICR : IDispatch.

C++ HRESULT put_enableReadRemit (
BOOL newVal

);
HRESULT get_enableReadRemit (

BOOL * pVal
);

C# int enableReadRemit (
boolean newVal

};
boolean enableReadRemit

C HRESULT IampMICR_put_enableReadRemit (
BOOL newVal

);
HRESULT IampMICR_get_enableReadRemit (
BOOL * pVal

);

JAVA void set_enableReadRemit (
boolean newVal

);
void get_enableReadRemit (
boolean* pVal

);

VB enableReadRemit (
 NewVal As Boolean
) as Integer;
enableReadRemit () as Boolean;

Parameters

newVal, pVal

A flag that turns on or off enableReadRemit.

Remarks

This property causes the ReadMICR method to read the entire workimage property looking for MICR data. Normally,
just the bottom .5 inch of the image is examined. The cropDistance property is still used when enableReadRemit is
true.

See IampMICR::ReadMICR

4.33. IampMICR::OCRCode

The IampMICR::OCRCode property controls the OCR algorithm used in the ReadMICR operation.

Quick Info

See IampMICR : IDispatch.

C++ HRESULT put_OCRCode (
int newVal

);
HRESULT get_OCRCode (

int * pVal
);

C# int OCRCode (
int newVal

};
int OCRCode

C HRESULT IampMICR_put_OCRCode (
int newVal

);
HRESULT IampMICR_get_OCRCode (
int * pVal

);

JAVA void set_OCRCode (
int newVal

);
void get_OCRCode (
int* pVal

);

VB OCRCode (
 NewVal As Integer
) as Integer;
OCRCode () as Integer;

Parameters

newVal, pVal

An integer that gets or sets OCRCode.

Remarks

The value of the OCRCode property controls the algorithm used in ReadMICR according to the following table:

OCRCode Recognition Algorithm
0 Standard two engine MICR processing
1 E13B
1 MICR
2 CMC7
3 CMC7 Line Seek
4 OCRA Numeric
8 OCRA Numeric Special
12 OCRA Alphanumeric
16 OCRA Alphanumeric Special
20 OCRA Euro
32 OCRB Numeric
64 OCRB Numeric Special
96 OCRB Alphanumeric
128 OCRB Alphanumeric Special
160 OCRB Euro
256 Omni Numeric
272 Omni Numeric Multi Line Seek
512 MICR Line Seek
528 MICR Multi Line Seek
1024 Courtesy Amount Recognition Numeric
2048 Four State Barcode
2056 Four State Barcode - Denmark
2064 Four State Barcode Multi
4096 Page Remit
8192 Square

See IampMICR::ReadMICR

4.34. IampMICR::FormatMICRFields

The IampMICR::FormatMICRFields method uses AMPLib to generate formatted MICR substrings from a source MICR
string. This method has the ability to translate unusual characters with a translation table.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT FormatMICRFields (
BSTR pszSource,
int nFilter,
BSTR pszTranslate,
BSTR *pszOutput,
BSTR *pszAuxOnUs,
BSTR *pszEPC,
BSTR *pszRoute,
BSTR *pszOnUs,
BSTR *pszAmount,
int *returnValue

);

C# int FormatMICRFields (
string pszSource,
int nFilter,
string pszTranslate,
string *pszOutput,
string *pszAuxOnUs,
string *pszEPC,
string *pszRoute,
string *pszOnUs,
string *pszAmount

);

C HRESULT IampImage_ FormatMICRFields (
BSTR pszSource,
int nFilter,
BSTR pszTranslate,
BSTR *pszOutput,
BSTR *pszAuxOnUs,
BSTR *pszEPC,
BSTR *pszRoute,
BSTR *pszOnUs,
BSTR *pszAmount,
int *returnValue

);

JAVA int FormatMICRFields (
String pszSource,
int nFilter,
String pszTranslate,
String *pszOutput,
String *pszAuxOnUs,
String *pszEPC,
String *pszRoute,
String *pszOnUs,
String *pszAmount

);

VB FormatMICRFields (
pszSource as String,
nFilter as Integer,
pszTranslate as String,
pszOutput as String,
pszAuxOnUs as String,
pszEPC as String,
pszRoute as String,
pszOnUs as String,
pszAmount as String

) as Integer

Parameters
pszSource

A pointer to the source string containing the MICR line to be formatted.

nFilter
If non-zero, any characters preceding the Aux On Us field will be removed.

pszTranslation

A pointer to an ASCII character translation string. If present, all MICR output will be translated through this table.

pszOutput
A pointer to the output string, to receive the complete formatted string.

pszAuxOnUs

A pointer to the string representing the output Aux On Us field.

pszEPC

A pointer to the string representing the output EPC field.

pszRoute
A pointer to the string representing the output Route field.

pszOnUs
A pointer to the string representing the output On Us field.

pszAmount
A pointer to the string representing the output Amount field.

Remarks
If non-null, szOutput points to the formatted 62 byte MICR data. The traditional field byte boundary assignments after
formatting are:

0-16 AuxOnUs field - length: 17 bytes
18 EPC Code - length: 1 byte
19-29 Route field - length 11 bytes
30-49 OnUs field - length 20 bytes
50-61 Amount field - length 12 bytes

Field data that is not present in the original input will be filled with space characters.

Translation tables are strings containing an ordered set of characters matching the available MICR characters in the
current code (i.e., E13B vs CMC7). An example translation table is shown below:

Example Translation Table

Location Meaning MICR Default

0 '0' '0' '0'

1 '1' '1' '1'

2 '2' '2' '2'

3 '3' '3' '3'

4 '4' '4' '4'

5 '5' '5' '5'

6 '6' '6' '6'

7 '7' '7' '7'

8 '8' '8' '8'

9 '9' '9' '9'

10 Routing  'A'

11 Amount  'B'

12 On Us  'C'

13 Dash  'D'

14 Blank ' ' ' '

15 Misread NA '*'

16 Best is same as Selected NA 'N'

See Also

IampMICR::getMICRFields

4.35. IampMICR::GetMoreReadCameraResults

The IampMICR::GetMoreReadCameraResults method returns additional status results following the ReadCamera
operation.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT GetMoreReadCameraResults (
int * pnOrientation,
int * pnOriginX,
int * pnOrginY,
int * pnCheckWidth,
int * pnCheckHeight,
int * pnResX,
int * pnResY,
int * pnSpare4,
int * pnSpare5,
int * pnSpare6,
int * pnSpare7,
int * pnSpare8,
int *returnValue

);

C# int GetMoreReadCameraResults (
out int pnOrientation,
out int pnOriginX,
out int pnOrginY,
out int pnCheckWidth,
out int pnCheckHeight,
out int pnResX,
out int pnResY,
out int pnSpare4,
out int pnSpare5,
out int pnSpare6,
out int pnSpare7,

 out int pnSpare8
);

C HRESULT IampImage_GetMoreReadCameraResults (
int * pnOrientation,
int * pnOriginX,
int * pnOrginY,
int * pnCheckWidth,
int * pnCheckHeight,
int * pnResX,
int * pnResY,
int * pnSpare4,
int * pnSpare5,
int * pnSpare6,
int * pnSpare7,
int * pnSpare8,
int *returnValue

);

JAVA int GetMoreReadCameraResults (
Integer pnOrientation,
Integer pnOriginX,
Integer pnOrginY,
Integer pnCheckWidth,
Integer pnCheckHeight,
Integer pnResX,
Integer pnResY,
Integer pnSpare4,
Integer pnSpare5,
Integer pnSpare6,
Integer pnSpare7,
Integer pnSpare8

);

VB GetMoreReadCameraResults (
pnOrientation as Integer,
pnOriginX as Integer,
pnOrginY as Integer,
pnCheckWidth as Integer,
pnCheckHeight as Integer,
pnResX as Integer,
pnResY as Integer,

 pnSpare4 as Integer
pnSpare5 as Integer,
pnSpare6 as Integer,
pnSpare7 as Integer,

 pnSpare8 as Integer
) as Integer

Parameters

pnOrientation

Indicates the source image was rotated a number of degrees: 0 – no rotation, 90 – the source image was rotated
clockwise, 180 – the image was upside down, 270 – the source image was rotated counter clockwise. The R
parameter must be used when calling ReadCamera in order to handle rotated source images.

pnOriginX

The X Coordinate of the check front image.

pnOriginY
The Y coordinate of the check front image.

pnCheckWidth
The pixel width of the check image.

pnCheckHeight
The pixel height of the check image.

pnResX
The horizontal resolution of the check image.

pnResY
The vertical resolution of the check image.

pnSpare4 – pnSpare8

These return parameters are reserved for future use.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code.

Remarks

This method returns additional values set by the last use of ReadCamera on the input and output buffer images.

See Also

 See IampMICR::ReadCamera, IampMICR::GetReadCameraResults

4.36. IampMICR::GetReadCameraResults

The IampMICR::GetReadCameraResults method returns status results following the ReadCamera operation.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT GetReadCameraResults (
BSTR *pszAuxOnUs,
BSTR *pszRoute,
BSTR *pszOnUs,
int * pnMicrOK,
int * pnMicrConf,
int * pnImagesOK,
int * pnImagesTooDark,
int * pnImagesTooLight,
int * pnImgNotSize,
int * pnRearMissing,
int * pnFrontMissing,
int *returnValue

);

C# int GetReadCameraResults (
string *pszAuxOnUs,
string *pszRoute,
string *pszOnUs,
out int pnMicrOK,
out int pnMicrConf,
out int pnImagesOK,
out int pnImagesTooDark,
out int pnImagesTooLight,
out int pnImgNotSize,
out int pnRearMissing,

 out int pnFrontMissing
);

C HRESULT IampImage_ GetReadCameraResults (
BSTR *pszAuxOnUs,
BSTR *pszRoute,
BSTR *pszOnUs,
int * pnMicrOK,
int * pnMicrConf,
int * pnImagesOK,
int * pnImagesTooDark,
int * pnImagesTooLight,
int * pnImgNotSize,
int * pnRearMissing,
int * pnFrontMissing,
int *returnValue

);

JAVA int GetReadCameraResults (
String *pszAuxOnUs,
String *pszRoute,
String *pszOnUs,
Integer pnMicrOK,
Integer pnMicrConf,
Integer pnImagesOK,
Integer pnImagesTooDark,
Integer pnImagesTooLight,
Integer pnImgNotSize,
Integer pnRearMissing,
Integer pnFrontMissing,

);

VB GetReadCameraResults (
pszAuxOnUs as String,
pszRoute as String,
pszOnUs as String,
pnMicrOK as Integer,
pnMicrConf as Integer,
pnImagesOK as Integer,

 pnImagesTooDark as Integer
pnImagesTooLight as Integer,
pnImgNotSize as Integer,
pnRearMissing as Integer,

 pnFrontMissing as Integer
) as Integer

Parameters

pszAuxOnUs
This string will contain the AuxOnUs field of the recognized MICR line.

pszRoute
This string will contain the Route field of the recognized MICR line.

pszOnUs
This string will contain the OnUs field of the recognized MICR line.

pnMicrOK
A nonzero value indicates that the MICR line was read successfully.

pnMicrConf

0-100 level indicating confidence of reading MICR line. Over 50 indicates a successful read of the MICR line routing
number.

pnImagesOK
A nonzero value indicates success in generating compliant TIFF images.

pnImagesTooDark
Indicates one or both of the images are too dark.

pnImagesTooLight

Indicates one or both of the images are too light.

pnImgNotSize
Indicates one or both of the images are the wrong size.

pnRearMissing
No output image is available. Indicates a rear image was not received or failed to process.

pnFrontMissing
No output image available. Indicates a front image failed to process.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code.

Remarks

This method returns values set by the last use of ReadCamera on the input and output buffer images.

See Also

 See IampMICR::ReadCamera

4.37. IampMICR::GetReadScannerResults

The IampMICR::GetReadScannerResults method returns status results following the ReadScanner operation.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT GetReadScannerResults (
BSTR *pszAuxOnUs,
BSTR *pszRoute,
BSTR *pszOnUs,
int * pnMicrOK,
int * pnMicrConf,
int * pnImagesOK,
int * pnImagesTooDark,
int * pnImagesTooLight,
int * pnImgNotSize,
int * pnRearMissing,
int * pnFrontMissing,
int *returnValue

);

C# int GetReadScannerResults (
string *pszAuxOnUs,
string *pszRoute,
string *pszOnUs,
out int pnMicrOK,
out int pnMicrConf,
out int pnImagesOK,
out int pnImagesTooDark,
out int pnImagesTooLight,
out int pnImgNotSize,
out int pnRearMissing,

 out int pnFrontMissing
);

C HRESULT IampImage_ GetReadScannerResults (
BSTR *pszAuxOnUs,
BSTR *pszRoute,
BSTR *pszOnUs,
int * pnMicrOK,
int * pnMicrConf,
int * pnImagesOK,
int * pnImagesTooDark,
int * pnImagesTooLight,
int * pnImgNotSize,
int * pnRearMissing,
int * pnFrontMissing,
int *returnValue

);

JAVA int GetReadScannerResults (
String *pszAuxOnUs,
String *pszRoute,
String *pszOnUs,
Integer pnMicrOK,
Integer pnMicrConf,
Integer pnImagesOK,
Integer pnImagesTooDark,
Integer pnImagesTooLight,
Integer pnImgNotSize,
Integer pnRearMissing,
Integer pnFrontMissing,

);

VB GetReadScannerResults (
pszAuxOnUs as String,
pszRoute as String,
pszOnUs as String,
pnMicrOK as Integer,
pnMicrConf as Integer,
pnImagesOK as Integer,

 pnImagesTooDark as Integer
pnImagesTooLight as Integer,
pnImgNotSize as Integer,
pnRearMissing as Integer,

 pnFrontMissing as Integer
) as Integer

Parameters

pszAuxOnUs
This string will contain the AuxOnUs field of the recognized MICR line.

pszRoute
This string will contain the Route field of the recognized MICR line.

pszOnUs
This string will contain the OnUs field of the recognized MICR line.

pnMicrOK
A nonzero value indicates that the MICR line was read successfully.

pnMicrConf

0-100 level indicating confidence of reading MICR line. Over 50 indicates a successful read of the MICR line routing
number.

pnImagesOK
A nonzero value indicates success in generating compliant TIFF images.

pnImagesTooDark
Indicates one or both of the images are too dark.

pnImagesTooLight

Indicates one or both of the images are too light.

pnImgNotSize
Indicates one or both of the images are the wrong size.

pnRearMissing
No output image is available. Indicates a rear image was not received or failed to process.

pnFrontMissing
No output image available. Indicates a front image failed to process.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code.

Remarks

This method returns values set by the last use of ReadScanner on the input and output buffer images.

See Also

 See IampMICR::ReadScanner

4.38. IampMICR::GetFieldVerifyResultData

The IampMICR::GetFieldVerifyResultData method gets OCR engine information about the most recent Verify
operation.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT GetFieldVerifyResultData (
int *nEngineLevel,
int *nMinTotalConf

);

C# void GetFieldVerifyResultData (
out int nEngineLevel,

 out int nMinTotalConf
);

C HRESULT IampImage_GetFieldVerifyResultData (
int *nEngineLevel,
int *nMinTotalConf

);

JAVA void GetFieldVerifyResultData (
int nEngineLevel,
int nMinTotalConf

);

VB GetFieldVerifyResultData (
nEngineLevel as Integer,
nMinTotalConf as Integer

)

Parameters

nEngineLevel
An integer value indicating the number of internal OCR processes required for the most recent Verify operation.

nMinTotalConf
An integer value indicating the lowest character confidence value found in the most recent Verify operation.

See Also

IampMICR::VerifyMICR, IampMICR::VerifyMICRField

4.39. IampMICR::GetFieldVerifyResultMinConf

The IampMICR::GetFieldVerifyResultMinConf method gets the lowest individual character confidence value from
each of the MICR fields from the most recent Verify operation.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT GetFieldVerifyResultMinConf (
int * nCheck,
int *nRoute,
int *nAccount,
int *nAmount

);

C# void GetFieldVerifyResultMinConf (
out int nCheck,
out int nRoute,
out int nAccount,

 out int nAmount
);

C HRESULT IampImage_GetFieldVerifyResultMinConf (
int * nCheck,
int *nRoute,
int * nAccount,

 int *nAmount
);

JAVA void GetFieldVerifyResultMinConf (
Integer nCheck,
Integer nRoute,
Integer nAccount,
Integer nAmount

);

VB GetFieldVerifyResultMinConf (
nCheck as Integer,
nRoute as Integer,
nAccount as Integer,

 nAmount as Integer
)

Parameters
nCheck

An integer value indicating the lowest character confidence value found in the Check/AuxOnUs field during the most
recent Verify operation.

nRoute
An integer value indicating the lowest character confidence value found in the Route field during the most recent
Verify operation.

nAccount

An integer value indicating the lowest character confidence value found in the Account/OnUs field during the most
recent Verify operation.

nAmount
An integer value indicating the lowest character confidence value found in the Amount field during the most recent
Verify operation.

See Also

IampMICR::VerifyMICR, IampMICR::VerifyMICRField

4.40. IampMICR::getMICRData

The IampMICR::getMICRData method returns information about a specific character in a ReadMICR, ReadCamera, or
ReadScanner operation result.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT getMICRData (
int charPos,
BYTE *pbyResult,
BYTE *pbyBestAlternate,
int *nConfidence,
int *nXPos

);

C# void getMICRData (
int charPos,
out Byte pbyResult,
out Byte pbyBestAlternate,
out int nConfidence,
out int nXPos

);

C HRESULT IampImage_getMICRData (
int charPos,
BYTE *pbyResult,
BYTE *pbyBestAlternate,
int *nConfidence,
int *nXPos

);

JAVA void getMICRData (
Integer charPos,
Byte pbyResult,
Byte pbyBestAlternate,
Integer nConfidence,

 Integer nXPos
);

VB getMICRData (
charPos as Integer,
pbyResult as Byte,
pbyBestAlternative as Byte,
nConfidence as Integer,
nXPos as Integer

)

Parameters

charPos
An input integer representing the (zero-based) character position index in the most recent MICR read operation
result for which information will be returned.

pbyResult

The MICR character identified at the specified position in the string.

pbyBestAlternate

The best alternate MICR character identified at the specified position in the string.

nConfidence
A 2-digit integer value ranging from 40 to 99, indicating MICR character identification confidence.

nXPos
This is an internal diagnostic variable and may be ignored.

See Also

IampMICR::ReadMICR, IampMICR::ReadCamera, IampMICR::ReadScanner

4.41. IampMICR::getMICRFields

The IampMICR::getMICRFields method returns fields from the last successful IampMICR::ReadMICR result, using
AMPLib's ampParseMicr method.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT getMICRFields (
BSTR *pszAll,
BSTR *pszAccount,
BSTR *pszEPC,
BSTR *pszRoute,
BSTR *pszCheck,
BSTR *pszAmount,
int *returnValue

);

C# int getMICRFields (
string *pszAll,
string *pszAccount,
string *pszEPC,
string *pszRoute,
string *pszCheck,
string *pszAmount,

);

C HRESULT IampImage_ getMICRFields (
BSTR *pszAll,
BSTR *pszAccount,
BSTR *pszEPC,
BSTR *pszRoute,
BSTR *pszCheck,
BSTR *pszAmount,
int *returnValue

);

JAVA int getMICRFields (
String *pszAll,
String *pszAccount,
String *pszEPC,
String *pszRoute,
String *pszCheck,
String *pszAmount,

);

VB getMICRFields (
pszAll as String,
pszAccount as String,
pszEPC as String,
pszRoute as String,
pszCheck as String,
pszAmount as String

)
as Integer

Parameters

pszAll
A pointer to the output string to contain the complete MICR line.

pszAccount

A pointer to the string representing the output Account field.

pszEPC

A pointer to the string representing the output EPC field.

pszRoute
A pointer to the string representing the output Route field.

pszCheck
A pointer to the string representing the output Check field.

pszAmount
A pointer to the string representing the output Amount field.

Remarks

This function provides a simple interface for retrieving data from the most recent successful ReadMICR operation. For
more functionality, including a character translation feature, see IampMICR::FormatMICRFields.

See Also

IampMICR::FormatMICRFields, IampMICR::AssembleMICR

4.42. IampMICR::getMICRRegion

The IampMICR::getMICRRegion method returns the region of interest that contains the MICR line last read with
ReadMICRPage.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT getMICRRegion (
LONG *nTop,
LONG *nLeft,
LONG *nRight,
LONG *nBottom,
int *returnValue

);

C# int getMICRRegion (
out int nTop,
out int nLeft,
out int nRight,
out int nBottom,

);

C HRESULT IampImage_ getMICRRegion (
LONG *nTop,
LONG *nLeft,
LONG *nRight,
LONG *nBottom,
int *returnValue

);

JAVA int getMICRRegion (
int outputTop,
int outputLeft,
int outputRight,
int outputBottom,

);

VB getMICRRegion (
nTop as Integer,
nLeft as Integer,
nRight as Integer,
nBottom as Integer

)
as Integer

Parameters

nTop
The top pixel margin of the MICR line.

nLeft

The left pixel margin of the MICR line.

nRight

The right pixel margin of the MICR line.

nBottom
The bottom pixel margin of the MICR line.

Remarks
This function provides a simple interface for retrieving the MICR region boundaries from the most recent successful
ReadMICRPage operation.

See Also
 IampMICR::ReadMICRPage

4.43. IampMICR::getRemitAlternateAmount

The IampMICR::getRemitAlternateAmount property returns a low-confidence alternative amount value from a
remittance document.

Quick Info

See IampMICR : IDispatch.

C++ HRESULT get_RemitAlternateAmount (

int* nRemitAlternateAmount
);

C# int nRemitAlternateAmount

C HRESULT IampBarcode_get_RemitAlternateAmount (
int* nRemitAlternateAmount

);

JAVA void get_RemitAlternateAmount (
int* nRemitAlternateAmount

);

VB RemitAlternateAmount () as Integer;

Remarks

This property will provide an alternate low-confidence amount value from the last ReadMICRRemit operation. The value
may be an amount found in the document that was less frequent than the amount returned by ReadMICRRemit. If no
alternative amount value was found, the property will contain a null string.

See Also

IampMICR::ReadMICRRemit

4.44. IampMICR::getRemitAlternateCheckNumber

The IampMICR::getRemitAlternateCheckNumber property returns a low-confidence alternative check number value
from a remittance document.

Quick Info

See IampMICR : IDispatch.

C++ HRESULT get_RemitAlternateCheckNumber (

int* nRemitAlternateCheckNumber
);

C# int nRemitAlternateCheckNumber

C HRESULT IampBarcode_get_RemitAlternateCheckNumber (
int* nRemitAlternateCheckNumber

);

JAVA void get_RemitAlternateCheckNumber (
int* nRemitAlternateCheckNumber

);

VB RemitAlternateCheckNumber () as Integer;

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code.

Remarks

This property will provide an alternate low-confidence check number value from the last ReadMICRRemit operation. The
value may be a check number found in the document that was less frequent than the check number returned by
ReadMICRRemit. If no alternative check number value was found, the property will contain a null string.

See Also

IampMICR::ReadMICRRemit

4.45. IampMICR::getRemitAlternateDate

The IampMICR::getRemitAlternateDate property returns a low-confidence alternative date value from a remittance
document.

Quick Info

See IampMICR : IDispatch.

C++ HRESULT get_RemitAlternateDate (

int* nRemitAlternateDate
);

C# int nRemitAlternateDate

C HRESULT IampBarcode_get_RemitAlternateDate (
int* nRemitAlternateDate

);

JAVA void get_RemitAlternateDate (
int* nRemitAlternateDate

);

VB RemitAlternateDate () as Integer;

Remarks

This parameter will provide an alternate low-confidence date value from the last ReadMICRRemit operation. The value
may be a date found in the document that was less frequent than the date returned by ReadMICRRemit. If no
alternative date value was found, the property will contain a null string.

See Also

IampMICR::ReadMICRRemit

4.46. IampMICR::getRemitAmountConfidence

The IampMICR::getRemitAmountConfidence property returns the confidence value of the check amount last read
with ReadMICRRemit.

Quick Info

See IampMICR : IDispatch.

C++ HRESULT get_RemitAmountConfidence (

int* nRemitAmountConfidence
);

C# int nRemitAmountConfidence

C HRESULT IampBarcode_get_RemitAmountConfidence (
int* nRemitAmountConfidence

);

JAVA void get_RemitAmountConfidence (
int* nRemitAmountConfidence

);

VB RemitAmountConfidence () as Integer;

Remarks
This property provides a confidence value for the check amount found in the most recent successful ReadMICRRemit
operation. A confidence value in the 90s indicates multiple occurrences of an amount in the document. Confidence lower
than 90 indicates a lack of corroborative findings for the result.

See Also
 IampMICR::ReadMICRRemit

4.47. IampMICR::getRemitAmountRegion

The IampMICR::getRemitAmountRegion method returns the region of interest that contains the amount last read
with ReadMICRRemit.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT getRemitAmountRegion (
LONG *nTop,
LONG *nLeft,
LONG *nRight,
LONG *nBottom,
int *returnValue

);

C# int getRemitAmountRegion (
out int nTop,
out int nLeft,
out int nRight,
out int nBottom,

);

C HRESULT IampImage_ getRemitAmountRegion (
LONG *nTop,
LONG *nLeft,
LONG *nRight,
LONG *nBottom,
int *returnValue

);

JAVA int getRemitAmountRegion (
int outputTop,
int outputLeft,
int outputRight,
int outputBottom,

);

VB getRemitAmountRegion (
nTop as Integer,
nLeft as Integer,
nRight as Integer,
nBottom as Integer

)
as Integer

Parameters

nTop
The top pixel margin of the amount line.

nLeft

The left pixel margin of the amount line.

nRight

The right pixel margin of the amount line.

nBottom
The bottom pixel margin of the amount line.

Remarks
This function provides a simple interface for retrieving the amount region boundaries from the most recent successful
ReadMICRRemit operation.

See Also

IampMICR::ReadMICRRemit

4.48. IampMICR::getRemitDateConfidence

The IampMICR::getRemitDateConfidence property returns the confidence value of the date last read with
ReadMICRRemit.

Quick Info

See IampMICR : IDispatch.

C++ HRESULT get_RemitDateConfidence (

int* nRemitDateConfidence
);

C# int nRemitDateConfidence

C HRESULT IampBarcode_get_RemitDateConfidence (
int* nRemitDateConfidence

);

JAVA void get_RemitDateConfidence (
int* nRemitDateConfidence

);

VB RemitDateConfidence () as Integer;

Remarks
This property provides a confidence value for the check date found in the most recent successful ReadMICRRemit
operation. A confidence value in the 90s indicates multiple occurrences of a date in the document. Confidence lower
than 90 indicates a lack of corroborative findings for the result.

See Also
 IampMICR::ReadMICRRemit

4.49. IampMICR::getRemitDateRegion

The IampMICR::getRemitDateRegion method returns the region of interest that contains the date last read with
ReadMICRRemit.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT getRemitDateRegion (
LONG *nTop,
LONG *nLeft,
LONG *nRight,
LONG *nBottom,
int *returnValue

);

C# int getRemitDateRegion (
out int nTop,
out int nLeft,
out int nRight,
out int nBottom,

);

C HRESULT IampImage_ getRemitDateRegion (
LONG *nTop,
LONG *nLeft,
LONG *nRight,
LONG *nBottom,
int *returnValue

);

JAVA int getRemitDateRegion (
int outputTop,
int outputLeft,
int outputRight,
int outputBottom,

);

VB getRemitDateRegion (
nTop as Integer,
nLeft as Integer,
nRight as Integer,
nBottom as Integer

)
as Integer

Parameters

nTop
The top pixel margin of the date line.

nLeft

The left pixel margin of the date line.

nRight

The right pixel margin of the date line.

nBottom
The bottom pixel margin of the date line.

Remarks
This function provides a simple interface for retrieving the date region boundaries from the most recent successful
ReadMICRRemit operation.

See Also
 IampMICR::ReadMICRRemit

4.50. IampMICR::getVerifyMICRData

The IampMICR::getVerifyMICRData method returns information about a specific character in a Verify operation
result.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT getVerifyMICRData (
int charPos,
BYTE *pbyResult,
BYTE *pbyBestAlternate,
int *nConfidence,
int *nXPos

);

C# void getVerifyMICRData (
int charPos,
out Byte pbyResult,
out Byte pbyBestAlternate,
out int nConfidence,
out int nXPos

);

C HRESULT IampImage_getVerifyMICRData (
int charPos,
BYTE *pbyResult,
BYTE *pbyBestAlternate,
int *nConfidence,
int *nXPos

);

JAVA void getVerifyMICRData (
Integer charPos,
Byte pbyResult,
Byte pbyBestAlternate,
Integer nConfidence,

 Integer nXPos
);

VB getVerifyMICRData (
charPos as Integer,
pbyResult as Byte,
pbyBestAlternative as Byte,
nConfidence as Integer,
nXPos as Integer

)

Parameters

charPos
An input integer representing the (zero-based) character position index in the most recent Verify operation result
for which information will be returned.

pbyResult

The MICR character identified at the specified position in the string.

pbyBestAlternate

The best alternate MICR character identified at the specified position in the string.

nConfidence
A 2-digit integer value ranging from 40 to 99, indicating MICR character identification confidence.

nXPos
This is an internal diagnostic variable and may be ignored.

See Also

IampMICR::VerifyMICR, IampMICR::VerifyMICRField

4.51. IampMICR::getRemitCheckNumberConfidence

The IampMICR::getRemitCheckNumberConfidence property returns the confidence value of the check number last
read with ReadMICRRemit.

Quick Info

See IampMICR : IDispatch.

C++ HRESULT get_RemitCheckNumberConfidence (

int* nRemitCheckNumberConfidence
);

C# int nRemitDateConfidence

C HRESULT IampBarcode_get_RemitCheckNumberConfidence (
int* nRemitCheckNumberConfidence

);

JAVA void get_RemitCheckNumberConfidence (
int* nRemitCheckNumberConfidence

);

VB RemitCheckNumberConfidence () as Integer;

Remarks

This property provides a confidence value for the check number found in the most recent successful ReadMICRRemit
operation. A confidence value in the 90s indicates multiple occurrences of a check number in the document. Confidence
lower than 90 indicates a lack of corroborative findings for the result.

See Also
 IampMICR::ReadMICRRemit

4.52. IampMICR::getRemitCheckNumberRegion

The IampMICR::getRemitCheckNumberRegion method returns the region of interest that contains the check
number last read with ReadMICRRemit.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT getRemitCheckNumberRegion (
LONG *nTop,
LONG *nLeft,
LONG *nRight,
LONG *nBottom,
int *returnValue

);

C# int getRemitCheckNumberRegion (
out int nTop,
out int nLeft,
out int nRight,
out int nBottom,

);

C HRESULT IampImage_ getRemitCheckNumberRegion (
LONG *nTop,
LONG *nLeft,
LONG *nRight,
LONG *nBottom,
int *returnValue

);

JAVA int getRemitCheckNumberRegion (
int outputTop,
int outputLeft,
int outputRight,
int outputBottom,

);

VB getRemitCheckNumberRegion (
nTop as Integer,
nLeft as Integer,
nRight as Integer,
nBottom as Integer

)
as Integer

Parameters

nTop
The top pixel margin of the check number line.

nLeft

The left pixel margin of the check number line.

nRight

The right pixel margin of the check number line.

nBottom
The bottom pixel margin of the check number line.

Remarks
This function provides a simple interface for retrieving the check number region boundaries from the most recent
successful ReadMICRRemit operation.

See Also
 IampMICR::ReadMICRRemit

4.53. IampMICR::getRemitCheckRegion

The IampMICR::getRemitCheckRegion method returns the pixel boundaries of the region that contains the check
last read with ReadMICRRemit.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT getRemitCheckRegion (
LONG *nTop,
LONG *nLeft,
LONG *nRight,
LONG *nBottom,
int *returnValue

);

C# int getRemitCheckRegion (
out int nTop,
out int nLeft,
out int nRight,
out int nBottom,

);

C HRESULT IampImage_ getRemitCheckRegion (
LONG *nTop,
LONG *nLeft,
LONG *nRight,
LONG *nBottom,
int *returnValue

);

JAVA int getRemitCheckRegion (
int outputTop,
int outputLeft,
int outputRight,
int outputBottom,

);

VB getRemitCheckRegion (
nTop as Integer,
nLeft as Integer,
nRight as Integer,
nBottom as Integer

)
as Integer

Parameters

nTop
The top pixel margin of the check region.

nLeft

The left pixel margin of the check region.

nRight

The right pixel margin of the check region.

nBottom
The bottom pixel margin of the check region.

Remarks
This function provides a simple interface for retrieving the check region boundaries from the most recent successful
ReadMICRRemit operation.

See Also
 IampMICR::ReadMICRRemit

4.54. IampMICR::PrepareCouponImage

The IampMICR::PrepareCouponImage method uses special grayscale image processing and character shape (glyph)
detection to find the corners in the grayscale source image and then produce a destination grayscale image that is
cropped and deskewed.

Quick Info

See IampMICR : IDispatch.

C++ HRESULT PrepareCouponImage (

LONG nSourceImage,
LONG nDestinationImage,
PAMPPREPINFO pInfo,
LONG nImageType,
PAMPQUAD pVirtualCoord,
LONG nMinDX,
LONG nMinDY,
LONG nMinGlyphs,
LONG nTypeGlyphs,
LONG* pnFoundGlyphs,
LONG* pnGlyphX,
LONG* pnGlyphY,
LONG* pnGlyphDX,
LONG* pnGlyphDY,
LONG* pnStrengthLeftOut,
LONG* pnStrengthRightOut,
LONG* pnStrengthTopOut,
LONG* pnStrengthBottomOut
LONG* ampResult

);

C# int PrepareCouponImage (
int nSourceImage,
int nDestinationImage,
int nBlackEdges,
int nRotate,
int nResolution,
out double pdblSkewDetected
int nSourceImage,
int nDestinationImage,
PAMPPREPINFO pInfo,
int nImageType,
PAMPQUAD pVirtualCoord,
int nMinDX,
int nMinDY,
int nMinGlyphs,
int nTypeGlyphs,
out int * pnFoundGlyphs,
out int * pnGlyphX,
out int * pnGlyphY,
out int * pnGlyphDX,
out int * pnGlyphDY,
out int * pnStrengthLeftOut,
out int * pnStrengthRightOut,
out int * pnStrengthTopOut,
out int * pnStrengthBottomOut
out int * ampResult

);

C HRESULT IampMICR_PrepareCouponImage (
LONG nSourceImage,
LONG nDestinationImage,
PAMPPREPINFO pInfo,
LONG nImageType,
PAMPQUAD pVirtualCoord,
LONG nMinDX,
LONG nMinDY,
LONG nMinGlyphs,
LONG nTypeGlyphs,
LONG* pnFoundGlyphs,
LONG* pnGlyphX,
LONG* pnGlyphY,
LONG* pnGlyphDX,
LONG* pnGlyphDY,
LONG* pnStrengthLeftOut,
LONG* pnStrengthRightOut,
LONG* pnStrengthTopOut,
LONG* pnStrengthBottomOut
LONG* ampResult

);

JAVA int PrepareCouponImage (
int nSourceImage,
int nDestinationImage,
PAMPPREPINFO pInfo,
int nImageType,
PAMPQUAD pVirtualCoord,
int nMinDX,
int nMinDY,
int nMinGlyphs,
int nTypeGlyphs,
int pnFoundGlyphs,
int pnGlyphX,
int pnGlyphY,
int pnGlyphDX,
int pnGlyphDY,
int pnStrengthLeftOut,
int pnStrengthRightOut,
int pnStrengthTopOut,
int pnStrengthBottomOut

);

VB PrepareCouponImage (
int nSourceImage as Integer,
int nDestinationImage as Integer,
pInfo as PAMPPREPINFO,
nImageType as Integer,
pVirtualCoord as PAMPQUAD,
nMinDX as Integer,
nMinDY as Integer,
nMinGlyphs as Integer,
nTypeGlyphs as Integer,
pnFoundGlyphs as Integer,
pnGlyphX as Integer,
pnGlyphY as Integer,
pnGlyphDX as Integer,
pnGlyphDY as Integer,
pnStrengthLeftOut as Integer,
pnStrengthRightOut as Integer,
pnStrengthTopOut as Integer,
pnStrengthBottomOut as Integer

)
as Integer;

Parameters

nSourceImage

The image buffer 0-9 is used as the source check image. A value of -1 will cause the contents of the main image
property to be used. The source image must be grayscale.

nDestinationImage
The image buffer 0-9 is used as the destination image for the cropped and deskewed check image. A value of -1
tells the method to use the main image property as the destination. The destination image must not be the same as
the source image.

pInfo – BlackEdges (input only)
A value of 0 tells the algorithm to look for white edges around the input check image. A value of 1 indicates black
edge processing is enabled.

pInfo – rotation (input)
This input forces rotation of the input image or detect rotation.
 Value: 0 – no rotation, 90 – rotate 90 degrees clockwise, -90 – rotate 90 degrees counter-clockwise,
1 or 91 – if rotation detected rotate 90 degrees clockwise, -1 or -91 – if rotation detected rotate 90 degrees
counter-clockwise.

pInfo – rotation (output)
Indicates whether rotation occurred.
Value: 0 – no rotation, 1 – rotation of the amount and direction requested did happen.a

pInfo – resolution (input)
If this value is 0 then the source image resolution will be determined algorithmically. A nonzero value will force that
resolution to be used during crop and deskew.

pInfo – resolution (output)
The detected horizontal resolution found during crop and deskew.

nImageType
This input value specifies the type of digitized document contained within the limits of the image.

 Value: 0 - page, 1 – check, 5 – coupon, 6 - coupon A (no glyph detection), 7 - back side(no glyph detection)

pVirtualCoord
 These output values are the XY coordinates of the document corners in the original input image.

nMinDX
This input used when nImageType = 7 indicates the minimum document width found on the front side. The size of

the back side of a check or coupon should be the same as the front side. These parameters provide that information. In
the future this could also be used to input expected size of a front size in a normalized fashion. For example it could
describe the size expected if at 200 dpi. This would then be adjusted based on the actual dpi found.

nMinDY

This input used when nImageType = 7 indicates the minimum document height found on the front side. The size of
the back side of a check or coupon should be the same as the front side. These parameters provide that information. In
the future this could also be used to input expected size of a front size in a normalized fashion. For example it could
describe the size expected if at 200 dpi. This would then be adjusted based on the actual dpi found.

nMinGlyphs

This input is used only when resolution detection is turned on.
Value: 0 – uses a default value depending on nImageType. Positive values are used as the minimum
 number of glyphs to find in the document subimage. For example, the default length of glyphs

for a check is 10. There are numerous cases where this value should be modified. If a MICR font is used on a
coupon but it only has a routing number, then the minGlyphs should be one less than the number of full size
MICR fonts. Special characters should not be considered in the minGlyphs in this case. Hence the minGlyphs for
a coupon with only a MICR routing number should be 8.

In the case of coupons, the typical glyph being found is an OCRA or OCRB font. In this case a minGlyph count
should be at least half of the length of gyphs expected. By having a larger value for the min, random strings of
characters on the image are less likely to have an effect or be detected as the glyph of interest.

nTypeGlyphs

 This input is reserved – Value = 0. When implemented, this will allow the caller to identify the glyph and hence the
 GPI. For example:

 Glyph GPI
 MICR 8
 OCRA/B 10(typical)
 Postal Barcode 22
 General Barcode random

pnFoundGlyphs
The number of glyphs found on the image.

pnGlyphX, pnGlyphY, pnGlyphDX, pnGlyphDY
The location and dimensions of the located glyph region. These values can be used to confirm that the resolution
value is valid based on the location of the glyph on the image. For example, a glyph on a check at the top probably
means it is upside down.

The DY value (height of the glyph region) will be taller because of any unadjusted skew, which should be minimal.
A DY much taller than the expected glyph height usually means that multi lines of gyphs were found and the
resulting resolution will be decreased.

pnStrengthLeftOut, pnStrengthRightOut, pnStrengthTopOut, pnStrengthBottomOut
These outputs are the confidence or strength of the position of the edges of the coupon region on the source image.
Strength values can range from 0 thru 4 - number of character shapes recognized:

 0 no edge detected. the best estimate of end of data used. End of data is simple threshold
 1 edge detected that meets min length and intensity values.
 2,3 corner found for this edge. E.G. left edge plus top edge meet hence a 2. If top and bottom meet left it is a 3.
 4 To be determined.

When most of the edges are a zero, it means that the object was detected by its simple extent and not by edges.
This means that skew correction probably did not occur.

ampResult
The error code returned. Error codes are defined in Appendix A.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code.

Remarks
The selected input grayscale image must be loaded into the specified input buffer prior to cropping and deskew. A value
of -1 for the input buffer will use the current contents of the main image property. The output cropped and deskewed
grayscale image will be transferred to the main image. The algorithm used for cropping and deskewing is influence by
the value in nImageType. An exception will be thrown (e_NoMemory) if the system runs out of memory while allocating
variables within this method.

The resolution of the destination image will be set to the found resolution (in x and y) if resolution detection was
requested and was found. In the case of a coupon and when resolution was detected, the destination image will be
scaled so that there is only a single resolution value for both x and y. The location of the result in the original image is
reported in the virtualCoord values. The location of the gyphs will be reported relative to the result image.

See Also

Appendix G – PrepareCouponImage Software Example

4.55. IampMICR::PrepareMICRImage

The IampMICR::PrepareMICRImage method uses special bilevel and grayscale image processing to find the corners
in the source check image and then produce a destination image that is cropped and deskewed.

Quick Info

See IampMICR : IDispatch.

C++ HRESULT PrepareMICRImage (

LONG nSourceImage,
LONG nDestinationImage,
LONG nBlackEdges,
LONG nRotate,
LONG nResolution,
DOUBLE* pdblSkewDetected,
LONG* ampResult

);

C# int PrepareMICRImage (
int nSourceImage,
int nDestinationImage,
int nBlackEdges,
int nRotate,
int nResolution,
out double pdblSkewDetected

);

C HRESULT IampMICR_PrepareMICRImage (
LONG nSourceImage,
LONG nDestinationImage,
LONG nBlackEdges,
LONG nRotate,
LONG nResolution,
DOUBLE* pdblSkewDetected,
LONG* ampResult

);

JAVA int PrepareMICRImage (
int nSourceImage,
int nDestinationImage,
int nBlackEdges,
int nRotate,
int nResolution,
double pdblSkewDetected

);

VB PrepareMICRImage (
nSourceImage as Integer,
nDestinationImage as Integer,
nBlackEdges as Integer,
nRotate as Integer,
nResolution as Integer,
pdblSkewDetected as Double

)
as Integer;

Parameters

nSourceImage

The image buffer 0-9 is used as the source check image. A value of -1 will cause the contents of the main image
property to be used. The source image must be bilevel or grayscale.

nDestinationImage
The image buffer 0-9 is used as the destination image for the cropped and deskewed check image. A value of -1
tells the method to use the main image property as the destination. The destination image must not be the same as
the source image.

nBlackEdges
A value of 0 tells the algorithm to look for white edges around the input check image. A value of 1 indicates black
edge processing is enabled.

nRotate
This input controls whether the check image is rotated before being cropped and deskewed.

Value: 0 – no rotation, -1 – auto detect rotate left, 1, auto detect rotate right, -90 rotate left always, 90 rotate right
always.

nResolution
If this value is 0 then the source image resolution will be used for the destination. A nonzero value will be used as
the destination image resolution (e.g. 200).

pdblSkewDetected
The number of MICR characters recognized.

ampResult
The error code returned. Error codes are defined in Appendix A.

Return Values

If the function succeeds, the return value is zero. Otherwise, the return code is an error code.

Remarks

The selected input image must be loaded prior to cropping and deskew. If the source image is bilevel, the cropped and
desked destination image will also be bilevel. If the source image is grayscale, the output image will be grayscale. The
skew value of the source image is returned through the pdblSkewDetected variable. An exception will be thrown
(e_NoMemory) if the system runs out of memory while allocating variables within this method.

See Also

Appendix A

4.56. IampMICR::ReadMICRRemit

The IampMICR::ReadMICRRemit method reads a remittance document and returns information fields.

Quick Info

See IampMICR : IDispatch.

C++

HRESULT ReadMICRRemit (
BSTR *pszMICR,
LONG *pnMICRCount,
BSTR *pszAmount,
LONG *pnAmountCount,
BSTR *pszDate,
LONG *pnDateCount,
BSTR *pszCheckNumber,
LONG *pnCheckNumberCount,
LONG *returnValue

);

C# int ReadMICRRemit (
string *pszMICR,
int *pnMICRCount,
string *pszAmount,
int *pnAmountCount,
string *pszDate,
int *pnDateCount,
string *pszCheckNumber,
int *pnCheckNumberCount

);

C HRESULT IampImage_ ReadMICRRemit (
BSTR *pszMICR,
LONG *pnMICRCount,
BSTR *pszAmount,
LONG *pnAmountCount,
BSTR *pszDate,
LONG *pnDateCount,
BSTR *pszCheckNumber,
LONG *pnCheckNumberCount,
LONG *returnValue

);

JAVA int ReadMICRRemit (
String *pszMICR,
int *pnMICRCount,
String *pszAmount,
int *pnAmountCount,
String *pszDate,
int *pnDateCount,
String *pszCheckNumber,
int *pnCheckNumberCount

);

VB ReadMICRRemit (
pszMICR as String,
pnMICRCount as Integer,
pszAmount as String,
pnAmountCount as Integer,
pszDate as String,
pnDateCount as Integer,
pszCheckNumber as String,
pnCheckNumberCount as Integer

)
as Integer

Parameters

pszMICR
The output string to contain the MICR line.

pnMICRCount

The number of characters in pszMICR.

pszAmount

The output string to contain the check amount.

pnAmountCount
The number of characters in pszAmount.

pszDate
The output string to contain the check date.

pnDateCount
The number of characters in pszDate.

pszCheckNumber

The output string to contain the check number.

pnCheckNumberCount
The number of characters in pszCheckNumber.

Remarks

This function reads a remittance document and provides output strings containing the MICR line, the amount, the date,
and the check number.

See Also

4.57. IampMICR::enableCameraMode

The IampImage::enableCameraMode property determines whether ReadMICR will use special image processing logic
before reading the MICR line.

Quick Info

See IampMICR: IDispatch.

C++ HRESULT put_enableCameraMode (

int enableCameraMode
);
HRESULT get_enableCameraMode (

int* enableCameraMode
);

C# int enableCameraMode

C HRESULT IampImage_put_enableCameraMode (
int* enableCameraMode

);
HRESULT IampImage_get_enableCameraMode (

int* enableCameraMode
);

JAVA void put_enableCameraMode (
int* enableCameraMode

);
void get_enableCameraMode (

int* enableCameraMode
);

VB enableCameraMode as Integer;

Parameters

enableCameraMode
An integer value. If set to 1, camera-oriented image processing will be performed MICR line reading. If set to 0, this
feature is disabled.

Remarks

Check images that have been acquired from a camera are frequently warped in a keystone fashion and have poor
grayscale content. If the CameraMode property is enabled, ReadMICR will use special image processing to dewarp and
threshold the image prior to reading the MICR line. The image object will not be updated with the dewarped and
thresholded image. To do that, use the ReadCamera method. Internal to the COM object, ReadMICR uses
ampReadMicrCamera when CameraMode is enabled.

See Also

IampMICR::ReadMICR

4.58. IampMICR::enableFullPage

The IampImage::enableFullPage property determines whether ReadMICR will search through the entire document
looking for the MICR line.

Quick Info

See IampMICR: IDispatch.

C++ HRESULT put_enableFullPage (
int enableFullPage

);
HRESULT get_enableFullPage (

int* enableFullPage
);

C# int enableFullPage

C HRESULT IampImage_put_enableFullPage (
int* enableFullPage

);
HRESULT IampImage_get_enableFullPage (

int* enableFullPage
);

JAVA void put_enableFullPage (
int* enableFullPage

);
void get_enableFullPage (

int* enableFullPage
);

VB enableFullPage as Integer;

Parameters

enableFullPage
An integer value. If set to 1, the full page remittance feature will be enabled. If set to 0, this feature will be
disabled.

Remarks

Usually the MICR line is located near the bottom of a check image. This feature enables ReadMICR to search the entire
image before reading the MICR line.

See Also

IampMICR::ReadMICR

4.59. IampMICR::enableScannerMode

The IampImage::enableScannerMode property determines whether ReadMICR will use full page image processing
logic before reading the MICR line.

Quick Info

See IampMICR: IDispatch.

C++ HRESULT put_enableScannerMode (

int enableScannerMode
);
HRESULT get_enableScannerMode (

int* enableScannerMode
);

C# int enableCameraMode

C HRESULT IampImage_put_enableScannerMode (
int* enableScannerMode

);
HRESULT IampImage_get_enableScannerMode (

int* enableScannerMode
);

JAVA void put_enableScannerMode (
int* enableScannerMode

);
void get_enableScannerMode (

int* enableScannerMode
);

VB enableScannerMode as Integer;

Parameters

enableScannerMode
An integer value. If set to 1, scanner-oriented image processing will be performed before and during MICR line
reading. If set to 0, this feature is disabled.

Remarks

Check images that have been acquired from a flatbed scanner may be located anywhere in an 8.5x11 inch bitmap. If
the ScannerMode property is enabled, ReadMICR will use special image processing to isolate the image while reading
the MICR line. The image object will not be updated with the isolated. To do that, use the ReadScanner method.
Internal to the COM object, ReadMICR uses ampReadMicrScanner when ScannerMode is enabled.

See Also

IampMICR::ReadMICR

4.60. IampMICR::done180

The IampMICR::done180 property indicates whether or not a 180 degree rotation was necessary to read the most
recent image.

Quick Info

See IampMICR : IDispatch.

C++ HRESULT get_done180 (

int* done180
);

C# int done180

C HRESULT IampBarcode_get_done180 (
int* done180

);

JAVA void get_done180 (
int* done180

);

VB done180 () as Integer;

Parameters

done180
A pointer to an integer variable that will receive the value.

4.61. IampMICR::doneCombo

The IampMICR::doneCombo property indicates whether or not combo mode was used to read the most recent image.

Quick Info

See IampMICR : IDispatch.

C++ HRESULT get_doneCombo (
int* doneCombo

);

C# int doneCombo

C HRESULT IampBarcode_get_doneCombo (
int* doneCombo

);

JAVA void get_doneCombo(
int* doneCombo

);

VB DoneCombo () as Integer;

Parameters

doneCombo
A pointer to an integer variable that will receive the value.

4.62. IampMICR::doneImageUpdate

The IampMICR::doneImageUpdate property indicates whether or not image enhancements were necessary to read
the most recent image.

Quick Info

See IampMICR : IDispatch.

C++ HRESULT get_doneImageUpdate (

int* doneImageUpdate
);

C# int doneImageUpdate

C HRESULT IampBarcode_get_doneImageUpdate (
int* doneImageUpdate

);

JAVA void get_doneImageUpdate (
int* doneImageUpdate

);

VB doneImageUpdate () as Integer;

Parameters

doneImageUpdate
A pointer to an integer variable that will receive the value.

4.63. IampMICR::doneRepair

The IampMICR::doneRepair property indicates whether or not special processing was needed to read the most recent
image.

Quick Info

See IampMICR : IDispatch.

C++ HRESULT get_doneRepair (
int* doneRepair

);

C# int doneRepair

C HRESULT IampBarcode_get_doneRepair (
int* doneRepair

);

JAVA void get_doneRepair (
int* doneRepair

);

VB doneRepair () as Integer;

Parameters

doneRepair
A pointer to an integer variable that will receive the value.

Remarks

This property is usually set to zero.

4.64. IampMICR::skew

The IampMICR::skew property returns the detected skew ratio of the MICR baseline after a read operation.

Quick Info

See IampMICR : IDispatch.

C++ HRESULT get_skew (
double* dblSkew

);

C# double dblSkew

C HRESULT IampBarcode_get_dblSkew (
double* dblSkew

);

JAVA void get_dblSkew (
double* dblSkew

);

VB dblSkew () as Double;

Parameters

dblSkew
A pointer to a double variable that will receive the value.

Remarks

The skew ratio is calculated as (dy/dx). The origin is in the top left corner, so the sign will be inverted.

5. Appendix A

AMPLIB Error Codes
 1 Could not allocate PC memory space. A local or global allocation failed that was

needed to complete the requested operation.

 3 Specified work image does not exist. No image by the given name can be located.

 4 Name already in use.

 6 Not a primary image. An alias image may not be used in this instance.

10 AMPLIB cannot support any more tasks. The maximum number of callers has
already been reached.

11 Internal error. A software error has been detected in the AMPLIB system. Please
report this to AllMyPapers Technical Support.

12 Image bounds exceeded. The requested DX, DY, X, Y values exceed the values
allowed for this image, as given by MaxHeight and MaxWidth, or the requested
sub-image lies outside of the current image dimensions.

13 Image metrics error. The requested sub-image lies outside of the current image
dimensions.

14 Internal error calling the Windows API.

15 Bad handle passed to function. The given handle is incorrect or inappropriate for
the function in question.

16 User interrupt. A function terminated because of an improper call.

19 AMP function call error. There is an error in the arguments passed to the function
in question.

20 No size information. The image has not yet been loaded with any image data and
thus has no dimensions.

21 No cross-board operations are allowed. You may not perform an operation where
the source and destination image operands reside on different co-processors.

22 Incompatible image sizes. When a destination image is fixed size, the result image
must be less than or equal to the size of the destination.

23 Bad file name. The file path name given is incorrect or cannot be opened.

24 I/O error. The I/O system reported an error during execution of this function.

25 Cannot open trace file.

26 An invalid compression type was given.

27 An internal TIFF operation failed. In the processing of the IFD list or header, some
critical operation failed.

28 Required TIFF tag missing. The TIFF 6.0 Specification defines those tags which at
a minimum must be present in all baseline TIFF files. One of those tags is missing.

29 Image organization not supported. Only 1 bit per pixel bi-level images are
supported.

30 This system is unable to run AMPLIB. Call AllMyPapers Technical Support.

31 Unable to open the requested TIFF file. It may not be a TIFF file, or has an invalid
header.

32 The requested image within a multi-image TIFF file is not in the image file
directory of that TIFF file.

33 An error occurred while reading the TIFF IFD.

34 The KDY value given for Group 3 2d compression is invalid.

35 Assertion logic error. Some internal software data or pointer consistency has
occurred.

36 No region has been selected to support the requested operation.

37 The number passed to the function is out of range.

40 The resolution value given is not valid.

41 The page size value given is not valid.

42 The operation type is not valid.

43 The mode given is not valid.

46 The scale ratio given is not valid for this operation.

47 One of the arguments passed to the function is invalid.

48 AMPLIB is unable to create the requested file. This is most likely due to an invalid
path or some I/O permission error.

49 The margins are not legal for the page size.

51 No file specification was given and is required for this operation.

52 No index string was found in the file path name string.

53 Huge objects not supported yet.

54 The clipboard is empty.

55 General error. No detail available.

56 Download failure.

60 General printer failure.

62 A bad tag was found in a TIFF file.

64 An invalid TIFF header was detected.

65 Scaling while printing requires buffered print mode.

66 Source and destination images must be different.

67 The function in question timed out.

68 A callback function returned an error.

69 Application lockout.

70 This version of AMPLIB is not correct for this application.

71 An invalid file type was specified.

72 The image IX value must be a multiple of 32 for this operation.

73 The margins specified are not legal for this operation.

74 The requested TIFF tag already exists in the IFD list.

75 An invalid Optika header was detected.

76 The requested file format is unsupported in this mode.

83 No ensigns defined or allowed.

84 Bad MODCA RECID parameter

85 IBM MMR format not supported

86 Unsupported compression type

87 Decompression error

88 Unsupported MODCA or IOCA file format

89 Compression error

90 Thread already attached to DLL

91 Disk is full

92 File Access error

93 Too many files open

94 File exists

95 Bad file handle

96 No such file or directory

98 Thread not attached

101 No object data in image block

102 Can't find a needed DLL

103 Can't find entry point in DLL

104 License file fails security check

105 License check detected date rollback

106 License expired

107 License required for this feature

108 Image degenerated to dx=0 or dy=0

113 Software implementation only

114 Not an AMPLib PDF file

115 Error parsing PDF file

116 Missing files/files not loaded

117 License computer id error

118 Problem opening license file

119 Problem opening TWAIN device

120 Problem reading paper sensor on TWAIN device

121 Scanner Timeout

122 Not supported scanner

123 No image acquired while scanning

124 Failure during image warp

125 Failure during Data Matrix read

126 Invalid JBIG header

127 JBIG decompression problem

128 Failure while rotating image

129 CLICK count exhausted

130 No image content(all black/white or nearly so)

150 Exception happended in the wrapper accessing AmpLib.dll

161 Failure during Quick Response barcode read

201 No pointer to the TLS available

202 Input image error – low resolution or not enough levels of gray

5. Appendix B – AmpLibNet and COM Object Methods to AMPLIB API Guide

Shown below is a list of AmpLibNet/COM object functions and properties along with each corresponding
AMPLIB API function.

AnnotateImage (ampAnnotateImage)
AssembleMICR(ampAssembleMICR)
FilterImage (ampFilterImage)
FormatMICRFields(ampFormatMICRFields)
GetAmplibVersion (ampGetFileVersion)
GetBarCodes (ampGetBarCodeData)
GetLicenseInfo (ampGetLicenseInfo)
GetMessage (ampGetMessageText)
GetRunsInfo (ampGetRunsInfo)
getMICRFields (ampParseMicr)
GetScaledImageAddress (ampScaleImage, ampGrayQuickScaleImage, ampGetImageAddress)
GetWindow (ampGetImageMetrics)
InterpolateGrayImage (ampGrayInterpolate)
LoadBlankImage (ampCreateWorkImage, ampCreateGrayWorkImage)
LoadClipboardImage (ampLoadClipboard)
LoadImage (ampLoadImage)
LoadImageBuffer (ampLoadImageBuffer)
LoadMICRImage (ampLoadImage, ampDynamicThreshold, ampScaleImage, ampReadMicr)
PasteImageFromBuffer (ampCopyImage)
pixelBitDepth (ampGetGrayImageMetrics)
PrepareCouponImage (ampSobelEdgePrepEx)
PrepareMICRImage (ampPrepMicr)
ProcessGrayImage (ampGrayProcesses)
PromoteBilevelImage (ampConvertImage)
ReadCamera, GetReadCameraResults (ampReadCamera)
ReadMICR (ampReadMicr, ampReadMicrCamera, ampReadMicrPage, ampPrepMicr,
ampScaleImage, ampFilterImage, ampDeBack, ampDeSpec, ampReadOCR)
ReadMICRPage (ampReadMicrPage, ampPrepMicr, ampScaleImage, ampFilterImage)
ReadMICRRemit, GetRemitAmountRegion, GetRemitDateRegion,
 GetRemitCheckNumberRegion, GetRemitCheckRegion, getMICRData (ampReadMicrRemit)
ReadScanner, GetReadScannerResults (ampReadScannerForChecks)
RotateImageToBuffer (ampRotateImage)
SaveImage (ampSaveImage)
SaveImageToClipboard (ampSaveClipboard)
ScaleImageToBuffer (ampScaleImage)
ScaleWidthResolution (ampScaleWidthResolution)
SaveImageToMemory (ampSaveImageMem)
SaveImageToMemoryTest (ampSaveImageMem)
ScanBarCodes (ampReadBar)
SecurityEnableAppsFile (ampSecurityEnableAppsFile)
SetWindow (ampSetImageMetrics)
ThresholdGrayImage (ampDynamicThreshold, ampGrayAdaptiveThreshold, ampGreyImageProcess)
traceEnable (ampTraceEnable)
traceFile (ampTraceEnable)
VerifyMICR (ampVoteMicrRetry, ampVoteIRDRetry)
VerifyMICRField (ampFieldVerifyEx)

6. Appendix C – AMPLIB API Calls not used by AMPLib COM/AmpLibNet

Shown below is a list of AMPLIB API calls not used by AMPLib COM or AmpLibNet.

MICR Functions
ampPrepPage
ampReadMicrRepair
ampReadMicrDouble
ampVoteIRDRepair
ampVoteMicrRepair

Image Manipulation Functions
ampBitBltImage
ampDeSkew
ampDitherImage
ampGrayMirrorImage
ampMirrorImage

Image Filtering Functions
ampDeBorder
ampDeLine
ampDeShade
ampDeStreak

Miscellaneous Functions
ampPutImageBlock

7. Appendix D – AMPLib COM/AmpLibNet functionality not present in AMPLIB DLL

Shown below is a list of AMPLib COM functions not present in AMPLIB DLL.

AutoPrep - The AMPLib COM Object’s AutoPrep feature uses AMPLIB DLL functionality to optimize MICR
Read results on an image. If AutoPrep is enabled when an image is loaded (LoadImage) into the image object, the
COM object will perform several combinations of image processing, thresholding, and MICR Read operations to
find the best settings for MICR reading. Once the optimal settings are found, the image will be scaled to 200 dpi.
AutoPrep is primarily useful for grayscale images of unknown resolution.

ReadMICR - In the AMPLib COM Object, the MICR Read operation incorporates elements of the All My Papers
MICRBatch program (Combo Mode, Filter, ImagePrep, OCR A, and OCR B) to read MICR lines robustly.

WorkImage Encapsulation - The AMPLib COM object provides an array of 10 permanently allocated image
buffers, which encapsulate the direct manual allocation calls available in AMPLIB DLL.

Image Display Styles - In the AmpCOMDemo programs, images can be displayed in a variety of different zoom
and scaling styles.

MICR Result Image Overlay - In the AmpCOMDemo programs, MICR results are displayed over the check image
after a successful MICR Read operation.

8. Appendix E – Module Redistribution

The typical AMPLib COM object installation places executables and DLL support files
in the C:\Program Files\AllMyPapers\AmplibCOM folder. If for example you create a
Visual Basic application that references the AMPLib COM object, you may choose to use
a different subdirectory to hold that application and the AMPLib support files on the
target PC. These files are:

amplib.dll
amplibif.dll and interop.amplibif.dll (or AmpLibNet.dll)
amplm.dll
LogosDM.dll
ampPX.dll
storage.dat
lvscmc7.fnt
lvsmicr.fnt
lvsocrb.fnt
lvsocra.fnt
lvsfsb.fnt
lvscar.fnt
lvsnum.fnt
lvssquare.fnt

For a 64-bit AmpLibNet install, all DLLs should have a 64 suffix as in: AmpLib64.dll,
AmpLibNet64.dll, AmpLM64.dll, LogosDM64.DLL, and ampPX64.dll.

Next, the AX9Lib COM object must be registered on the PC so that it will be “visible” to
your application. This can be done automatically if you are using a product like
InstallShield. Otherwise, use the following call to the regsvr32 application using a batch
file or exec call:

regsvr32 amplibif.dll

9. Appendix F – ReadCamera Software Example

The ReadCamera method offers a powerful means to process check front and back
images captured from cellphone cameras. ReadCamera therefore needs up to two images
for input and can provide one or two images as output. The CSharp code below is an
example of how to allocate the image buffers in AmpLibNet as ReadCamera input and
output images.

using System;
using System.IO;

using System.Collections.Generic;
using System.Text;
using System.Runtime.InteropServices;
using AmpLibNetClasses;

namespace ImageinMemoryTest
{
 class Program
 {
 static void Main(string[] args)
 {
 AmpLibNet micrLib = new AmpLibNet();
 // See the CSharp AmpLibNet demo Form1_Load routine for these next two lines of code
 // AMPLibCode ampC = new AMPLibCode(this);
 // ampC.CSInitAmplib(micrLib);

 int status;

 micrLib.grayImageEnable = 1;
 // Load the image file into the main AmpLibNet image property
 status = micrLib.LoadImage(@"D:\CustomerData\Amp Crop Failures\Amp Testing
Redact\Front\N001001330913454434030138.jpg", "", "", 1);
 if (status == 0)
 {
 // Transfer the image in the main image property to image buffer 1 of 1-10
 status = micrLib.CopyImageToBuffer(1);
 }
 if (status == 0)
 {

 // Load the image file into the main AmpLibNet image property
 status = micrLib.LoadImage(@"D:\CustomerData\Amp Crop Failures\Amp Testing
Redact\Front\N001001330913454434030138.jpg", "", "", 1);
 }
 if (status == 0)
 {

 // Transfer the image in the main image property to image buffer 2 of 1-10
 status = micrLib.CopyImageToBuffer(2);
 }
 if (status > 0)
 {
 String msg = String.Format("LoadImage failed with error = {0} - ", status);
 return;
 }

 String CameraOptions = "CARQ=0M=85";

 String MICROutput = "";
 int MICRLength = 0;

 string strAuxOnUs = "";
 string strRoute = "";
 string strOnUs = "";

 int nMicrOK = 0;
 int nMicrConf = 0;
 int nImagesOK = 0;
 int nImagesTooDark = 0;
 int nImageTooLight = 0;
 int nImgNotSize = 0;
 int nRearMissing = 0;
 int nFrontMissing = 0;

 try
 {
 // Read the camera front and back images from image buffers 1 and 2 transferring the output
 // to AmpLibNet image buffers 3 and 4
 status = micrLib.ReadCamera(1, 2, 3, 4, CameraOptions, ref MICROutput, ref MICRLength);

 if (status == 0)
 {
 status = micrLib.GetReadCameraResults(ref strAuxOnUs, ref strRoute, ref strOnUs, ref nMicrOK,
 ref nMicrConf, ref nImagesOK, ref nImagesTooDark, ref nImageTooLight, ref nImgNotSize,
 ref nRearMissing, ref nFrontMissing);
 Console.WriteLine(MICROutput);
 }
 if (status == 0)
 {
 status = micrLib.PasteImageFromBuffer(3);
 }
 if (status == 0)
 {
 status = micrLib.SaveImage("D:\\frontout.tif", "B=1", "tif");
 }
 if (status == 0)
 {
 status = micrLib.PasteImageFromBuffer(4);
 }

 if (status == 0)
 {
 status = micrLib.SaveImage("D:\\rearout.tif", "B=1", "tif");
 }

 }
 catch (System.Exception ex)
 {
 Console.WriteLine(ex.Message);
 }

 if (status > 0)
 {
 String msg = String.Format("Recognition failled with = ", status);

 return;
 }
 return;
 }
 }
}

10. Appendix G – PrepareCouponImage Software Example

The PrepareCouponImage method offers a powerful means to crop and deskew coupon,
check, and other document image types captured from cellphone cameras.
PrepareCouponImage uses the main AmpLibNet image property for input if the input
value is -1 otherwise it uses one of the 10 image buffers. Output to any of the 10 image
buffers is also routed back to the main image property for viewing in the application. The
VB code below is from the button handler code in the demo application.

 Private Sub btnPrepareImage_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
btnPrepareCouponImage.Click

 Dim nStat As Integer = 0 'stores return codes for ampobj functions

 Dim strTemp As String = ""

 'front and back check image source and destination buffers
 Dim nSource As Integer
 Dim nDestination As Integer

 Dim PrepInfo As AmpLibAPI.ampPrepInfo
 Dim VirtualCoord As AmpLibAPI.ampQUAD

 Dim nBlackEdges As Integer = 0
 Dim nImageType As Integer = 0
 Dim nResolution As Integer = 0
 Dim nRotate As Integer = 0
 Dim nMinDX As Integer = 0
 Dim nMinDY As Integer = 0
 Dim nMinGlyphs As Integer = 0
 Dim nTypeGlyphs As Integer = 0
 Dim nFoundGlyphs As Integer = 0
 Dim nGlyphDX As Integer = 0
 Dim nGlyphDY As Integer = 0
 Dim nGlyphX As Integer = 0
 Dim nGlyphY As Integer = 0

 Dim nStrengthLeftOut As Integer = 0
 Dim nStrengthRightOut As Integer = 0
 Dim nStrengthTopOut As Integer = 0
 Dim nStrengthBottomOut As Integer = 0

 'temp message strings
 Dim msg As String = ""
 Dim msg2 As String = ""

 'read front and back check image source and destination buffers from the interface
 nSource = (Integer.Parse(piSourceBuffer.Text))
 nDestination = (Integer.Parse(piDestinationBuffer.Text))

 PrepInfo.ZeroMemory()

 VirtualCoord.ulcX = 0
 VirtualCoord.ulcY = 0
 VirtualCoord.urcX = 0
 VirtualCoord.urcY = 0
 VirtualCoord.llcX = 0
 VirtualCoord.llcY = 0
 VirtualCoord.lrcX = 0
 VirtualCoord.lrcY = 0

 Try
 ' Read the prepare image input from the user interface
 ' Sobel Input
 'nImageType = 0 page
 ' = 1 check
 ' = 2 check sides (second phase of detrap, two pases)
 ' = 4 check dewrap (one pass)
 ' = 5 coupon
 ' = 6 coupon A (no glyph)
 ' = 7 back side(no glyph)
 '
 ' minDx,minDy used for minimun back side

 If piPage.Checked Then
 nImageType = AmpLibAPI.PREPPAGE
 ElseIf piCheck.Checked Then

 nImageType = AmpLibAPI.PREPCHECK
 ElseIf piBack.Checked Then
 nImageType = AmpLibAPI.PREPBACK
 ElseIf piCoupon.Checked Then
 nImageType = AmpLibAPI.PREPCOUPON
 ElseIf piCouponA.Checked Then
 nImageType = AmpLibAPI.PREPCOUPONA
 End If

 If piBlackEdges.Checked Then
 nBlackEdges = 1
 Else
 nBlackEdges = 0
 End If

 nResolution = Integer.Parse(piResolution.Text)
 nRotate = Integer.Parse(piRotation.Text)

 PrepInfo.BlackEdges = nBlackEdges
 PrepInfo.Resolution = nResolution
 PrepInfo.Rotate = nRotate

 nMinDX = Integer.Parse(piMinDX.Text)
 nMinDY = Integer.Parse(piMinDY.Text)
 nMinGlyphs = Integer.Parse(piMinGlyphs.Text)
 nTypeGlyphs = Integer.Parse(piTypeGlyphs.Text)

 Catch
 End Try

 If g_nActiveOperation <> AO_NONE Then
 DisplayBusyMessage("prep Coupon")
 Return
 End If

 g_nActiveOperation = AO_PREPMICR

 ' Turn on the hourglass cursor
 Me.Cursor = System.Windows.Forms.Cursors.WaitCursor

 Try
 'Prepare Coupon Image
 nStat = g_ampLibNetObj.PrepareCouponImage(nSource, nDestination, PrepInfo, nImageType, VirtualCoord, _
 nMinDX, nMinDY, nMinGlyphs, nTypeGlyphs, nFoundGlyphs, _
 nGlyphX, nGlyphY, nGlyphDX, nGlyphDY, _
 nStrengthLeftOut, nStrengthRightOut, nStrengthTopOut, nStrengthBottomOut)

 g_nActiveOperation = AO_NONE

 ' Turn off the hourglass cursor
 Me.Cursor = System.Windows.Forms.Cursors.Default

 Catch ex As Exception
 g_nActiveOperation = AO_NONE

 ' Turn off the hourglass cursor
 Me.Cursor = System.Windows.Forms.Cursors.Default

 ' If there is no status error because of the exception, then create one
 If nStat = 0 Then
 nStat = 11 ' Internal error. A software error has been detected in the AMPLIB system. Please
report this to AllMyPapers Technical Support.
 End If

 MsgBox("There was an exception calling PrepareCouponImage: " & ex.Source & "-" & ex.Message)
 Return
 End Try

 If (nStat <> 0) Then
 msg = String.Format("PrepareCouponImage returned with error = {0} - ", nStat)
 g_ampLibNetObj.GetMessage(nStat, msg2)
 msg = msg + msg2
 MessageBox.Show(msg, "AMPLIB Error", MessageBoxButtons.OK, MessageBoxIcon.Error)
 Return
 End If

 'if the call was successful, display the results
 If (nStat = 0) Then
 piGlyphCount.Text = nFoundGlyphs.ToString
 piGlyphX.Text = nGlyphX.ToString
 piGlyphY.Text = nGlyphY.ToString
 piGlyphDX.Text = nGlyphDX.ToString
 piGlyphDY.Text = nGlyphDY.ToString
 piOutResolution.Text = PrepInfo.Resolution.ToString
 piOutRotation.Text = PrepInfo.Rotate.ToString
 piStrengthLeft.Text = nStrengthLeftOut.ToString
 piStrengthTop.Text = nStrengthTopOut.ToString
 piStrengthRight.Text = nStrengthRightOut.ToString
 piStrengthBottom.Text = nStrengthBottomOut.ToString

 piULCX.Text = VirtualCoord.ulcX.ToString
 piULCY.Text = VirtualCoord.ulcY.ToString
 piURCX.Text = VirtualCoord.urcX.ToString
 piURCY.Text = VirtualCoord.urcY.ToString
 piLLCX.Text = VirtualCoord.llcX.ToString
 piLLCY.Text = VirtualCoord.llcY.ToString
 piLRCX.Text = VirtualCoord.lrcX.ToString
 piLRCY.Text = VirtualCoord.lrcY.ToString

 g_bDrawOutputGlyphBoxOnImage = True
 dblOutputGlyphBoxTop = nGlyphY
 dblOutputGlyphBoxLeft = nGlyphX
 dblOutputGlyphBoxRight = nGlyphX + nGlyphDX
 dblOutputGlyphBoxBottom = nGlyphY + nGlyphDY
 End If

 'if a destination has been selected
 If nStat = 0 And nDestination <> -1 Then
 'paste the destination buffer contents into the main image object
 g_ampLibNetObj.PasteImageFromBuffer(nDestination)
 ScaleImage(1)
 UpdateDisplay()
 ElseIf nStat = 0 And nDestination = -1 Then
 'the destination was the main image object
 ScaleImage(1)
 UpdateDisplay()
 End If

 ''if the call was successful, display the results in a message box
 'If (nStat = 0) Then
 ' msg = "Detected Skew: " + dblSkewDetected.ToString + vbCrLf
 ' MessageBox.Show(msg, "PrepareMICRImage", MessageBoxButtons.OK)
 'End If

 Me.imgBox.Invalidate()
 End Sub

